Simulating Actions with the Associative Self-Organizing Map
We present a system that can learn to represent actions as well as to internally simulate the likely continuation of their initial parts. The method we propose is based on the Associative Self Organizing Map (A-SOM), a variant of the Self Organizing Map. By emulating the way the human brain is thought to perform pattern recognition tasks, the A- SOM learns to associate its activity with di erent inputs over time, where inputs are observations of other's actions. Once the A-SOM has learnt to recognize actions, it uses this learning to predict the continuation of an observed initial movement of an agent, in this way reading its intentions. We evaluate the system's ability to simulate actions …