SWAPHI-LS: Smith-Waterman Algorithm on Xeon Phi coprocessors for Long DNA Sequences
As an optimal method for sequence alignment, the Smith-Waterman (SW) algorithm is widely used. Unfortunately, this algorithm is computationally demanding, especially for long sequences. This has motivated the investigation of its acceleration on a variety of high-performance computing platforms. However, most work in the literature is only suitable for short sequences. In this paper, we present SWAPHI-LS, the first parallel SW algorithm exploiting emerging Xeon Phi coprocessors to accelerate the alignment of long DNA sequences. In SWAPHI-LS, we have investigated three parallelization approaches (naive, tiled, and distributed) in order to deeply explore the inherent parallelism within Xeon P…