0000000000769213

AUTHOR

Davy Paindaveine

Optimal signed-rank tests based on hyperplanes

Abstract For analysing k -variate data sets, Randles (J. Amer. Statist. Assoc. 84 (1989) 1045) considered hyperplanes going through k - 1 data points and the origin. He then introduced an empirical angular distance between two k -variate data vectors based on the number of hyperplanes (the so-called interdirections ) that separate these two points, and proposed a multivariate sign test based on those interdirections. In this paper, we present an analogous concept (namely, lift-interdirections ) to measure the regular distances between data points. The empirical distance between two k -variate data vectors is again determined by the number of hyperplanes that separate these two points; in th…

research product

Affine-invariant rank tests for multivariate independence in independent component models

We consider the problem of testing for multivariate independence in independent component (IC) models. Under a symmetry assumption, we develop parametric and nonparametric (signed-rank) tests. Unlike in independent component analysis (ICA), we allow for the singular cases involving more than one Gaussian independent component. The proposed rank tests are based on componentwise signed ranks, à la Puri and Sen. Unlike the Puri and Sen tests, however, our tests (i) are affine-invariant and (ii) are, for adequately chosen scores, locally and asymptotically optimal (in the Le Cam sense) at prespecified densities. Asymptotic local powers and asymptotic relative efficiencies with respect to Wilks’…

research product