0000000000769213

AUTHOR

Davy Paindaveine

showing 2 related works from this author

Optimal signed-rank tests based on hyperplanes

2005

Abstract For analysing k -variate data sets, Randles (J. Amer. Statist. Assoc. 84 (1989) 1045) considered hyperplanes going through k - 1 data points and the origin. He then introduced an empirical angular distance between two k -variate data vectors based on the number of hyperplanes (the so-called interdirections ) that separate these two points, and proposed a multivariate sign test based on those interdirections. In this paper, we present an analogous concept (namely, lift-interdirections ) to measure the regular distances between data points. The empirical distance between two k -variate data vectors is again determined by the number of hyperplanes that separate these two points; in th…

Statistics and ProbabilityApplied MathematicsStudentized residualCombinatoricsRandom variateData pointHyperplaneNorm (mathematics)Test statisticCalculusSign testStatistics Probability and UncertaintyStatistique mathématiqueElliptical distributionMathematics
researchProduct

Affine-invariant rank tests for multivariate independence in independent component models

2016

We consider the problem of testing for multivariate independence in independent component (IC) models. Under a symmetry assumption, we develop parametric and nonparametric (signed-rank) tests. Unlike in independent component analysis (ICA), we allow for the singular cases involving more than one Gaussian independent component. The proposed rank tests are based on componentwise signed ranks, à la Puri and Sen. Unlike the Puri and Sen tests, however, our tests (i) are affine-invariant and (ii) are, for adequately chosen scores, locally and asymptotically optimal (in the Le Cam sense) at prespecified densities. Asymptotic local powers and asymptotic relative efficiencies with respect to Wilks’…

Statistics and ProbabilityMultivariate statisticssingular information matricesRank (linear algebra)Gaussianuniform local asymptotic02 engineering and technology01 natural sciencesdistribution-free testsCombinatoricstests for multivariate independence010104 statistics & probabilitysymbols.namesakenormaalius0202 electrical engineering electronic engineering information engineeringApplied mathematics0101 mathematicsStatistique mathématiqueIndependence (probability theory)Parametric statisticsMathematicsDistribution-free testsuniform local asymptotic normalityNonparametric statistics020206 networking & telecommunicationsIndependent component analysisrank testsAsymptotically optimal algorithmsymbolsindependent component models62H1562G35Statistics Probability and UncertaintyUniform local asymptotic normality62G10
researchProduct