0000000000770127
AUTHOR
Timo J. Kärkkäinen
Effects of triplet Higgs bosons in long baseline neutrino experiments
The triplet scalars $(\Delta=\Delta^{++},\Delta^{+},\Delta^{0})$, utilized in the so-called Type-II seesaw model to explain the lightness of neutrinos, would generate nonstandard interactions (NSI) for neutrino propagating in matter. We investigate the prospects to probe these interactions in long baseline neutrino oscillation experiments. We analyze the upper bounds that the proposed DUNE experiment might set on the nonstandard parameters and numerically derive upper bounds, as function of the lightest neutrino mass, on the ratio the mass $M_\Delta$ of the triplet scalars and strength $|\lambda_\phi|$ of the coupling $\phi\phi\Delta$ of the triplet $\Delta$ and conventional Higgs doublet $…
Constraining the nonstandard interaction parameters in long baseline neutrino experiments
In this article we investigate the prospects for probing the strength of the possible non-standard neutrino interactions (NSI) in long baseline neutrino oscillation experiments. We find that these experiments are sensitive to NSI couplings down to the level of 0.01-0.1 depending on the oscillation channel and the baseline length, as well as on the detector's fiducial mass. We also investigate the interference of the leptonic CP angle $\delta_{CP}$ with the constraining of the NSI couplings. It is found that the interference is strong in the case of the $\nu_{e}\leftrightarrow\nu_{\mu}$ and $\nu_{e}\leftrightarrow\nu_{\tau}$ transitions but not significant in other transitions. In our numeri…