TTAS a New Stilbene Derivative that Induces Apoptosis in Leishmania Infantum
Leishmania parasites are able to undergo apoptosis (programmed cell death), similarly to mammalian cells. Recently it was demonstrated in vitro the anti-leishmanial effect of some natural and synthetic stilbenoids including resveratrol and piceatannol. In this study we evaluated the Leishmanicidal activity of a pool of stilbene derivatives which had previously shown high apoptotic efficacy against neoplastic cells. All the compounds tested were capable to decrease the parasite viability in a dose-dependent manner. Trans-stilbenes proved to be markedly more effective than cis-isomers. This was different from that observed in tumor cells in which cis-stilbenes were more potent cytotoxic agent…
Pharmacologic screen identifies active combinations with BET inhibitors and LRRK2 as a novel putative target in lymphoma
Inhibitors of the Bromo- and Extra-Terminal domain (BET) family proteins have strong preclinical antitumor activity in multiple tumor models, including lymphomas. Limited single-agent activity has been reported in the clinical setting. Here, we have performed a pharmacological screening to identify compounds that can increase the antitumor activity of BET inhibitors in lymphomas. The germinal center B-cell like diffuse large B-cell lymphoma (DLBCL) cell lines OCI-LY-19 and WSU-DLCL2 were exposed to 348 compounds given as single agents at two different concentrations and in combination with the BET inhibitor birabresib. The combination partners included small molecules targeting important bi…
Abstract PO-46: Mechanisms of resistance to the PI3K inhibitor copanlisib in marginal zone lymphoma
Abstract Background: PI3Kδ is expressed in B cells and has a central role in the B-cell receptor signaling. Copanlisib is a highly selective PI3Kδ and PI3Kα inhibitor, and it is currently under clinical development in indolent lymphomas including marginal zone lymphoma (MZL). Copanlisib is Food and Drug Administration (FDA) approved for the treatment of patients with relapsed or refractory follicular lymphoma. Nevertheless, a subset of patients can eventually relapse due to acquired resistance. A better understanding of resistance mechanisms could help to design improved therapies; hence, we generated MZL cell lines resistant to copanlisib. Materials and Methods: Cells were kept on copanlis…
Recurrence of the oxazole motif in tubulin colchicine site inhibitors with anti-tumor activity
Abstract Because of its wide spectrum of targets and biological activities, the oxazole ring is a valuable heterocyclic scaffold in the design of new therapeutic agents with anticancer, antiviral, antibacterial, anti-inflammatory, neuroprotective, antidiabetic and antidepressant properties. The presence of two heteroatoms, oxygen and nitrogen, offers possible interactions (hydrogen, hydrophobic, van der Waals or dipoles bonds) with a broad range of receptors and enzymes. Furthermore, the oxazole core conjugates low cytotoxicity with improved compound solubility and is well suited to structural modifications such as substitution with different groups and condensation to aromatic, heteroaroma…
Antibody-drug conjugates for lymphoma patients: preclinical and clinical evidences
Antibody-drug conjugates (ADCs) are a recent, revolutionary approach for malignancies treatment, designed to provide superior efficacy and specific targeting of tumor cells, compared to systemic cytotoxic chemotherapy. Their structure combines highly potent anti-cancer drugs (payloads or warheads) and monoclonal antibodies (Abs), specific for a tumor-associated antigen, via a chemical linker. Because the sensitive targeting capabilities of monoclonal Abs allow the direct delivery of cytotoxic payloads to tumor cells, these agents leave healthy cells unharmed, reducing toxicity. Different ADCs have been approved by the US Food and Drug Administration (FDA) and the European Medicines Agency (…