0000000000770850

AUTHOR

G Sposito

Mixed MHD convection and Tritium transport in fusion-relevant configurations

Mixed MHD flow and Tritium transport were computed for a slender poloidal duct, representative of a DEMO HCLL blanket element. 2-D flow and temperature fields were computed in the duct's cross section under the assumption of parallel, fully developed flow, while Tritium concentration C was found by solving a fully 3-D problem with simplifying assumptions at the duct's ends. The spatial distribution of C depended on the intensity and direction of the forced flow. Significant peak factors were obtained if the net flow rate was so low that re-circulation occurred; C maxima were attained near the walls for upward flow, in the core region for downward flow.

research product

One-dimensional Mixed MHD Convection

The parallel, fully developed flow of an electrically conducting fluid between plane parallel walls under the simultaneous influence of a driving pressure head, buoyancy, and magnetohydrodynamic (MHD) forces is studied. The fluid is assumed to be internally heated and the flow is modeled as one-dimensional and incompressible, while the Boussinesq approximation is adopted for the buoyancy terms. Analytical solutions are obtained for temperature, velocity and electrical potential under different electrical boundary conditions, forced to natural convection intensity ratios and values of the magnetic induction. Generalized working charts are presented which synthetically describe the system''s …

research product

Fully Developed Mixed Magnetohydrodynamic Convection in a Vertical Square Duct

The fully developed flow of an electrically conducting, internally heated fluid in a vertical square duct under the influence of buoyancy and magnetohydrodynamic forces is studied. The flow being parallel, the governing equations are two-dimensional and linear; an analytical solution exists for temperature, while velocity and electric potential are computed by a finite difference technique under different electric boundary conditions, forced to natural convection intensity ratios and values of the magnetic induction. Limiting values of pressure gradient and mean velocity are determined for the flow to be unidirectional throughout the duct's section; recirculation occurs for intermediate val…

research product