0000000000770855
AUTHOR
Emanuel Marom
Wavelength-multiplexing system for single-mode image transmission
The expanding use of optical communication by means of optical fibers and the situation of drastically increasing amounts of data to be transmitted urge the exploration of novel systems permitting the transmission of large amounts of spatial information by fiber with smaller spatial resolution. An optical encoding and decoding system is suggested for transmitting one- or two-dimensional images by means of a single-mode fiber. The superresolving system is based on wavelength multiplexing of the input spatial information, which is achieved with diffractive optical elements. Preliminary experimental results demonstrate the capabilities of the suggested method for the one- and two-dimensional c…
Joint transform correlator with spatial code division multiplexing.
A joint transform correlator may suffer from overlapping of the zero diffraction order of the output, which does not contain relevant information, and the correlation peaks that appear in the first diffraction orders if objects are not sufficiently separated. Such overlapping significantly reduces the signal-to-noise ratio of the identification process. We propose a novel approach based on code division multiplexing technique in which the contrast of the identification peaks is significantly enhanced. The approach does not include placing the two objects side by side but rather includes code multiplexing them. Moreover, the code division multiplexing technique allows the space-bandwidth pro…
Improved superresolution in coherent optical systems.
Objects that temporally vary slowly can be superresolved by the use of two synchronized moving masks such as pinholes or gratings. This approach to superresolution allows one to exceed Abbe’s limit of resolution. Moreover, under coherent illumination, superresolution requires a certain approximation based on the time averaging of intensity rather than of field distribution. When extensive digital postprocessing can be incorporated into the optical system, a detector array and some postprocessing algorithms can replace the grating that is responsible for information decoding. In this way, no approximation is needed and the synchronization that is necessary when two gratings are used is simpl…