0000000000771005

AUTHOR

Maikel De Vries

showing 2 related works from this author

Cornering Colored Coannihilation

2018

In thermal dark matter models, allowing the dark matter candidate to coannihilate with another particle can considerably loosen the relic density constraints on the dark matter mass. In particular, introducing a single strongly interacting coannihilation partner in a dark matter model can bring the upper bound on the dark sector energy scale from a few TeV up to about 10 TeV. While these energies are outside the LHC reach, a large part of the parameter space for such coannihilating models can be explored by future hadron colliders. In this context, it is essential to determine whether the current bounds on dark matter simplified models also hold in non-minimal scenarios. In this paper, we s…

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsDark matterHadronFOS: Physical sciencesContext (language use)Minimal modelsAstrophysics::Cosmology and Extragalactic AstrophysicsParameter space01 natural sciencesUpper and lower boundslaw.inventionHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)law0103 physical scienceslcsh:QC770-798lcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsColliderPhenomenological Models
researchProduct

The coannihilation codex

2015

We present a general classification of simplified models that lead to dark matter (DM) coannihilation processes of the form DM + X $\rightarrow$ SM$_1$ + SM$_2$, where X is a coannihilation partner for the DM particle and SM$_1$, SM$_2$ are Standard Model fields. Our classification also encompasses regular DM pair annihilation scenarios if DM and X are identical. Each coannhilation scenario motivates the introduction of a mediating particle M that can either belong to the Standard Model or be a new field, whereby the resulting interactions between the dark sector and the Standard Model are realized as tree-level and dimension-four couplings. We construct a basis of coannihilation models, cl…

PhysicsParticle physicsNuclear and High Energy PhysicsAnnihilationLarge Hadron Collider010308 nuclear & particles physicsPhysicsElectroweak interactionDark matterFOS: Physical sciencesFermionQuantum number01 natural sciencesHigh Energy Physics - PhenomenologyMAJORANAHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530Hadronic CollidersSymmetry breaking010306 general physicsPhenomenological ModelsJournal of High Energy Physics
researchProduct