0000000000771045

AUTHOR

Philip E. Hardee

On the deceleration of Fanaroff–Riley Class I jets: mass loading by stellar winds

Jets in low-luminosity radio galaxies are known to decelerate from relativistic speeds on parsec scales to mildly or sub-relativistic speeds on kiloparsec scales. Several mechanisms have been proposed to explain this effect, including strong reconfinement shocks and the growth of instabilities (both leading to boundary-layer entrainment) and mass loading from stellar winds or molecular clouds. We have performed a series of axisymmetric simulations of the early evolution of jets in a realistic ambient medium to probe the effects of mass loading from stellar winds using the code Ratpenat. We study the evolution of Fanaroff-Riley Class I (FRI) jets, with kinetic powers L_j \sim 1.e41-1.e44 erg…

research product

Hydrodynamical and Emission Simulations of Relativistic Jets: Stability and Generation of Superluminal and Stationary Components

We present 2D hydrodynamical and emission simulations of the jet stabilityafter the introduction of strong perturbations on a relativistic jet. These simulations show that the interaction of a single strong perturbation with the underlying jet results in the formation of multiple conical shocks with very specific observational properties.

research product

Anatomy of helical relativistic jets: The case of S5 0836+710

Helical structures are common in extragalactic jets. They are usually attributed in the literature to periodical phenomena in the source (e.g., precession). In this work, we use VLBI data of the radio-jet in the quasar S5 0836+710 and hypothesize that the ridge-line of helical jets like this corresponds to a pressure maximum in the jet and assume that the helically twisted pressure maximum is the result of a helical wave pattern. For our study, we use observations of the jet in S5 0836+710 at different frequencies and epochs. The results show that the structures observed are physical and not generated artificially by the observing arrays. Our hypothesis that the observed intensity ridge-lin…

research product

S5 0836+710: An FRII jet disrupted by the growth of a helical instability?

The remarkable stability of extragalactic jets is surprising, given the reasonable possibility of the growth of instabilities. In addition, much work in the literature has invoked this possibility in order to explain observed jet structures and obtain information from these structures. For example, it was recently shown that the observed helical structures in the jet in S5 0836+710 could be associated with helical pressure waves generated by Kelvin-Helmholtz instability. Our aim is to resolve the arc-second structure of the jet in the quasar S5 0836+710 and confirm the lack of a hot-spot (reverse jet-shock) found by present observing arrays, as this lack implies a loss of jet collimation be…

research product

The role of Kelvin-Helmholtz instability in the internal structure of relativistic outflows. The case of the jet in 3C 273

Relativistic outflows represent one of the best-suited tools to probe the physics of AGN. Numerical modelling of internal structure of the relativistic outflows on parsec scales provides important clues about the conditions and dynamics of the material in the immediate vicinity of the central black holes in AGN. We investigate possible causes of the structural patterns and regularities observed in the parsec-scale jet of the well-known quasar 3C 273. We present here the results from a 3D relativistic hydrodynamics numerical simulation based on the parameters given for the jet by Lobanov & Zensus (2001), and one in which the effects of jet precession and the injection of discrete compone…

research product

Jet stability and the generation of superluminal and stationary components

We present a numerical simulation of the response of an expanding relativistic jet to the ejection of a superluminal component. The simulation has been performed with a relativistic time-dependent hydrodynamical code from which simulated radio maps are computed by integrating the transfer equations for synchrotron radiation. The interaction of the superluminal component with the underlying jet results in the formation of multiple conical shocks behind the main perturbation. These trailing components can be easily distinguished because they appear to be released from the primary superluminal component, instead of being ejected from the core. Their oblique nature should also result in distinc…

research product