0000000000771691
AUTHOR
Y. Leventoux
Highly efficient few-mode spatial beam self-cleaning at 15µm
We experimentally demonstrate that spatial beam self-cleaning can be highly efficient when obtained with a few-mode excitation in graded-index multimode optical fibers. By using 160 ps long, highly chirped (6 nm bandwidth at -3dB) optical pulses at 1562 nm, we demonstrate a one-decade reduction of the power threshold for spatial beam self-cleaning, with respect to previous experiments using pulses with laser wavelengths at 1030-1064 nm. Self-cleaned beams remain spatio-temporally stable for more than a decade of their peak power variation. The impact of input pulse temporal duration is also studied.
Spatial Beam Evolution in Nonlinear Multimode Fibers
We discuss some recent results illustrating the role of input wave-front shaping, propagation dynamics and output beam diagnostics in order to observe spatial beam cleaning in nonlinear multimode fibers and amplifiers.
Spatio-Temporal Beam Mapping for Studying Nonlinear Dynamics in Graded Index Multimode Fiber
We experimentally demonstrate high-resolution mapping of the spatio-temporal dynamics of the beam cleaning process in graded index multimode fibers. This high-resolution characterization reveals the time-dependent nature of the beam self-cleaning process.
Kerr beam self-cleaning in the telecom band
Multimode graded index (GRIN) fibers received a renewed interest in recent years, in particular for the development of new laser sources [1]. In many cases, the use of GRIN fibers is limited by multimodal propagation, leading to a spatially modulated intensity distribution (speckles) at the fiber output. Recent studies have found that quasi-single mode propagation can be recovered in GRIN fibers by the so-called Kerr self-cleaning effect [2]. It consists in the spontaneous recovery of the spatial beam quality, without any frequency shift [2] (as opposed to, e.g., Raman beam self-cleaning [3]). This nonlinear process was only observed so far at laser wavelengths around 1 μm, for peak power l…
Experimental evidence of the real multimode nature of geometric parametric instability
We show experimentally that geometric parametric instability in graded-index multimode fibers is composed by several multimode spectral components. The experimental observation is obtained by using a new 3D technique of high-resolution spatial and spectral analysis.