0000000000771708
AUTHOR
Thomas Coban
Biochemical Characterization of a Novel Channel-Activating Site on Nicotinic Acetylcholine Receptors
We have studied the interaction of the reversible acetylcholine esterase inhibitor (-)physostigmine and several structurally related compounds with the nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata electric tissue by means of ligand-induced ion flux into nAChR-rich membrane vesicles, direct binding studies and photoaffinity labeling. (-)Physostigmine acts as a channel-activating ligand at low concentrations and as a direct channel blocker at elevated concentrations. Channel activation is not inhibited by desensitizing concentrations of ACh or ACh-competitive ligands (including alpha-bungarotoxin and D-tubocurarine) but is inhibited by antibody FK1 and several other compoun…
Introductory Lecture: Allosteric Modulation of Torpedo Nicotinic Acetylcholine Receptor Ion Channel Activity by Noncompetitive Agonists
AbstractSimilar to other neuroreceptors of the vertebrate central nervous system, the nicotinic acetylcholine receptor (nAChR) is subject to modulatory control by allosterically acting ligands. Of particular interest in this regard are allosteric ligands that enhance the sensitivity of the receptor to its natural agonist acetylcholine (ACh), as such ligands could be useful as drugs in diseases associated with impaired nicotinic neurotransmission. Here we discuss the action of a novel class of nAChR ligands which act as allosterically potentiating ligands (APL) on the nicotinic responses induced by ACh and competitive agonists. In addition, APLs also act as noncompetitive agonists of very lo…
Physostigmine and Neuromuscular Transmission
Single channel studies carried out in cultured rat myoballs and cultured hippocampal neurons, and ion flux studies performed on Torpedo electrocyte membrane vesicles, showed that physostigmine (Phy), a well-established acetylcholinesterase inhibitor, interacts directly with nicotinic acetylcholine receptors (nAChR). Low concentrations (0.1 microM) of Phy activate the receptor integral channel, whereas higher concentrations blocked the channel in its opened state. In contrast to channel activation by acetylcholine (ACh) and classical cholinergic agonists, however, Phy was capable of activating the nAChR channel even when the ACh binding sites were blocked by competitive antagonists, such as …