0000000000771916

AUTHOR

Helge Ruddat

showing 8 related works from this author

Compactifying Torus Fibrations Over Integral Affine Manifolds with Singularities

2021

This is an announcement of the following construction: given an integral affine manifold B with singularities, we build a topological space X which is a torus fibration over B. The main new feature of the fibration X → B is that it has the discriminant in codimension 2.

Pure mathematicsMathematics::Algebraic GeometryDiscriminantFeature (computer vision)FibrationTorusAffine transformationCodimensionTopological spaceAffine manifoldMathematics::Symplectic GeometryMathematics
researchProduct

Skeleta of affine hypersurfaces

2014

A smooth affine hypersurface Z of complex dimension n is homotopy equivalent to an n-dimensional cell complex. Given a defining polynomial f for Z as well as a regular triangulation of its Newton polytope, we provide a purely combinatorial construction of a compact topological space S as a union of components of real dimension n, and prove that S embeds into Z as a deformation retract. In particular, Z is homotopy equivalent to S.

Pure mathematicsPolynomialMathematicsofComputing_GENERALAffinePolytopeComplex dimensionTopological spaceTriangulation14J70Mathematics - Algebraic GeometryComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONFOS: MathematicsHomotopy equivalenceAlgebraic Topology (math.AT)Mathematics - Algebraic TopologyKato–Nakayama spaceAlgebraic Geometry (math.AG)SkeletonMathematicsToric degenerationTriangulation (topology)HomotopyLog geometry14J70 14R99 55P10 14M25 14T05RetractionHypersurfaceHypersurfaceNewton polytopeSettore MAT/03 - GeometriaGeometry and TopologyAffine transformationKato-Nakayama space14R99
researchProduct

An Introduction to Hodge Structures

2015

We begin by introducing the concept of a Hodge structure and give some of its basic properties, including the Hodge and Lefschetz decompositions. We then define the period map, which relates families of Kahler manifolds to the families of Hodge structures defined on their cohomology, and discuss its properties. This will lead us to the more general definition of a variation of Hodge structure and the Gauss-Manin connection. We then review the basics about mixed Hodge structures with a view towards degenerations of Hodge structures; including the canonical extension of a vector bundle with connection, Schmid’s limiting mixed Hodge structure and Steenbrink’s work in the geometric setting. Fin…

Pure mathematicsHodge theory010102 general mathematicsVector bundleComplex differential form01 natural sciencesPositive formHodge conjectureMathematics::Algebraic Geometryp-adic Hodge theory0103 physical sciences010307 mathematical physics0101 mathematicsHodge dualMathematics::Symplectic GeometryHodge structureMathematics
researchProduct

Local Gromov-Witten invariants are log invariants

2019

We prove a simple equivalence between the virtual count of rational curves in the total space of an anti-nef line bundle and the virtual count of rational curves maximally tangent to a smooth section of the dual line bundle. We conjecture a generalization to direct sums of line bundles.

Pure mathematicsConjectureGeneral Mathematics010102 general mathematicsTangent01 natural sciencesMathematics - Algebraic GeometryMathematics::Algebraic Geometry14N35 14D06 53D45Line bundle0103 physical sciencesFOS: Mathematics010307 mathematical physics0101 mathematicsEquivalence (formal languages)QAAlgebraic Geometry (math.AG)Mathematics::Symplectic GeometryMathematics
researchProduct

Logarithmic Enumerative Geometry and Mirror Symmetry

2020

PhysicsTheoretical physicsLogarithmGeneral MedicineMirror symmetryEnumerative geometryOberwolfach Reports
researchProduct

Tailoring a pair of pants

2021

Abstract We show how to deform the map Log : ( C ⁎ ) n → R n such that the image of the complex pair of pants P ∘ ⊂ ( C ⁎ ) n is the tropical hyperplane by showing an (ambient) isotopy between P ∘ ⊂ ( C ⁎ ) n and a natural polyhedral subcomplex of the product of the two skeleta S × Σ ⊂ A × C of the amoeba A and the coamoeba C of P ∘ . This lays the groundwork for having the discriminant to be of codimension 2 in topological Strominger-Yau-Zaslow torus fibrations.

General MathematicsImage (category theory)010102 general mathematicsTorusCodimensionMathematics::Geometric Topology01 natural sciencesCombinatoricsMathematics::Algebraic GeometryDiscriminantHyperplane0103 physical sciencesAmoeba (mathematics)Isotopy010307 mathematical physics0101 mathematicsMathematics::Symplectic GeometryPair of pantsMathematicsAdvances in Mathematics
researchProduct

Enumerative Aspects of the Gross-Siebert Program

2015

For the last decade, Mark Gross and Bernd Siebert have worked with a number of collaborators to push forward a program whose aim is an understanding of mirror symmetry. In this chapter, we’ll present certain elements of the “Gross-Siebert” program. We begin by sketching its main themes and goals. Next, we review the basic definitions and results of two main tools of the program, logarithmic and tropical geometry. These tools are then used to give tropical interpretations of certain enumerative invariants. We study in detail the tropical pencil of elliptic curves in a toric del Pezzo surface. We move on to a basic illustration of mirror symmetry, Gross’s tropical construction for \(\mathbb{P…

AlgebraElliptic curvePure mathematicsDel Pezzo surfaceLogarithmTropical geometryQAMirror symmetryMathematics::Symplectic GeometryPhysics::Atmospheric and Oceanic PhysicsPencil (mathematics)MathematicsEnumerative geometry
researchProduct

Enumerative aspects of the Gross-Siebert program

2014

We present enumerative aspects of the Gross-Siebert program in this introductory survey. After sketching the program's main themes and goals, we review the basic definitions and results of logarithmic and tropical geometry. We give examples and a proof for counting algebraic curves via tropical curves. To illustrate an application of tropical geometry and the Gross-Siebert program to mirror symmetry, we discuss the mirror symmetry of the projective plane.

Mathematics - Algebraic GeometryFOS: MathematicsAlgebraic Geometry (math.AG)Mathematics::Symplectic GeometryPhysics::Atmospheric and Oceanic Physics
researchProduct