0000000000771937
AUTHOR
Markus Franke
From nuclei to micro-structure in colloidal crystallization: Investigating intermediate length scales by small angle laser light scattering.
Hard sphere suspensions are well recognized model systems of statistical physics and soft condensed matter. We here investigate the temporal evolution of the immediate environment of nucleating and growing crystals and/or their global scale distribution using time resolved Small Angle Light Scattering (SALS). Simultaneously performed Bragg scattering (BS) measurements provide an accurate temporal gauging of the sequence of events. We apply this approach to studies of re-crystallization in several different shear molten hard sphere and attractive hard sphere samples with the focus being on the diversity of observable signal shapes and their change in time. We demonstrate that depending on th…
Growth, domain structure, and atomic adsorption sites of hBN on the Ni(111) surface
One of the most important functionalities of the atomically thin insulator hexagonal boron nitride (hBN) is its ability to chemically and electronically decouple functional materials from highly reactive surfaces. It is therefore of utmost importance to uncover its structural properties on surfaces on an atomic and mesoscopic length scale. In this paper, we quantify the relative coverages of structurally different domains of a hBN layer on the Ni(111) surface using low-energy electron microscopy and the normal incidence x-ray standing wave technique. We find that hBN nucleates on defect sites of the Ni(111) surface and predominantly grows in two epitaxial domains that are rotated by ${60}^{…
Solidification of a colloidal hard sphere like model system approaching and crossing the glass transition
We investigated the process of vitrification and crystallization in a model system of colloidal hard spheres. The kinetics of the solidification process was measured using time resolved static light scattering, while the time evolution of the dynamic properties was determined using time resolved dynamic light scattering. By performing further analysis we confirm that solidification of hard sphere colloids is mediated by precursors. Analyzing the dynamic properties we can show that the long time dynamics and thus the shear rigidity of the metastable melt is highly correlated with the number density of solid clusters (precursors) nucleated. In crystallization these objects convert into highly…
Modification of the charge and magnetic order of a low dimensional ferromagnet by molecule-surface bonding
The ability to design and control the spin and charge order of low dimensional materials on the molecular scale offers an intriguing pathway towards the miniaturization of spintronic technology towards the nanometer scale. In this work, we focus on the adsorption induced modifications of the magnetic and electronic properties of a low dimensional ferromagnetic surface alloy after the adsorption of the prototypical organic molecule perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA). For this metal-organic interface, we observe the formation of a localized $\sigma$-like bond between the functional molecular groups and the surface alloy atoms. This strong chemical bonding coincides with a l…
Heterogeneous and homogeneous crystal nucleation in colloidal hard-sphere like microgels at low metastabilities
We studied the crystallization kinetics of the homogeneous bulk as well as of the heterogeneous wall crystallization in a colloidal hard sphere model system within the fluid crystal coexistence region. Using time resolved static light scattering and Bragg microscopy we determined several parameters characterizing the crystallization process (induction times, growth coefficients, nucleation rate densities,…). By performing further analysis according to classical nucleation theory we can show that wall crystallization is favored by a vanishing nucleation barrier height leading to the conclusion that a hard sphere crystal completely wets a structureless hard wall.
Nucleation and crystal growth in a suspension of charged colloidal silica spheres with bi-modal size distribution studied by time-resolved ultra-small-angle X-ray scattering
A suspension of charged colloidal silica spheres exhibiting a bi-modal size distribution of particles, thereby mimicking a binary mixture, was studied using time-resolved ultra-small-angle synchrotron X-ray scattering (USAXS). The sample, consisting of particles of diameters d(A) = (104.7 ± 9.0) nm and d(B) = (88.1 ± 7.8) nm (d(A)/d(B) ≈ 1.2), and with an estimated composition A(0.6(1))B(0.4(1)), was studied with respect to its phase behaviour in dependance of particle number density and interaction, of which the latter was modulated by varying amounts of added base (NaOH). Moreover, its short-range order in the fluid state and its eventual solidification into a long-range ordered colloidal…