0000000000771967

AUTHOR

Nathan E. Crone

Different generators in human temporal-parasylvian cortex account for subdural laser-evoked potentials, auditory-evoked potentials, and event-related potentials

In order to localize cortical areas mediating pain we now report subdural cortical potentials evoked by auditory stimulation (auditory-evoked potentials - AEPs) and by cutaneous stimulation with a laser (laser-evoked potentials - LEPs). Stimulation with the laser evokes a pure pain sensation by selective activation of nociceptors. LEPs were maximal over the inferior aspect of the central sulcus and had the same polarity on either side of the sylvian fissure. AEPs were maximal posterior to the LEP maximum and had opposite polarity on opposite sides of the sylvian fissure, consistent with the location of a known generator in the temporal operculum. Auditory P3 (event-related) potentials were …

research product

Cutaneous Painful Laser Stimuli Evoke Responses Recorded Directly From Primary Somatosensory Cortex in Awake Humans

Negative and positive laser evoked potential (LEP) peaks (N2*, P2**) were simultaneously recorded from the primary somatosensory (SI), parasylvian, and medial frontal (MF: anterior cingulate and supplementary motor area) cortical surfaces through subdural electrodes implanted for the surgical treatment of intractable epilepsy. Distribution of the LEP N2*and P2**peaks was estimated to be in cortical areas (SI, parasylvian, and MF) identified by anatomic criteria, by their response to innocuous vibratory stimulation of a finger (v-SEP), and to electrical stimulation of the median nerve (e-SEP). The maximum of the LEP N2*peak was located on the CS, medial (dorsal) to the finger motor area, as …

research product

Amplitudes of laser evoked potential recorded from primary somatosensory, parasylvian and medial frontal cortex are graded with stimulus intensity

Intensity encoding of painful stimuli in many brain regions has been suggested by imaging studies which cannot measure electrical activity of the brain directly. We have now examined the effect of laser stimulus intensity (three energy levels) on laser evoked potentials (LEPs) recorded directly from the human primary somatosensory (SI), parasylvian, and medial frontal cortical surfaces through subdural electrodes implanted for surgical treatment of medically intractable epilepsy. LEP N2* (early exogenous/stimulus-related potential) and LEP P2** (later endogenous potential) amplitudes were significantly related to the laser energy levels in all regions, although differences between regions w…

research product

Attention to pain is processed at multiple cortical sites in man.

Painful cutaneous laser stimuli evoked potentials (LEPs) were recorded over the primary somatosensory (SI), parasylvian, and medial frontal (MF) cortex areas in a patient with subdural electrode grids located over these areas for surgical treatment of epilepsy. The amplitudes of the negative (N2*) and positive (P2**) LEP peaks over SI, parasylvian, and MF cortex were enhanced by attention to (counting stimuli), in comparison with distraction from the stimulus (reading for comprehension). Late positive deflections following the P2** peak (late potential—LP) were recorded over MF and from the lateral premotor regions during attention but not during distraction. These findings suggest that att…

research product