0000000000772461

AUTHOR

M. Pinto

Proof of Concept of an Irradiance Estimation System for Reconfigurable Photovoltaic Arrays

In order to reduce the mismatch effect caused by non-uniform shadows in PV arrays, reconfigurable interconnections approaches have been recently proposed in the literature. These systems usually require the knowledge of the solar radiation affecting every solar module. The aim of this work is to evaluate the effectiveness of three irradiance estimation approaches in order to define which can be well suited for reconfigurable PV arrays. It is presented a real-time solar irradiance estimation device (IrradEst), implementing the three different estimation methods. The proposed system is based on mathematical models of PV modules enabling to estimate irradiation values by sensing a combination …

research product

Determination of consensus kQ values for megavoltage photon beams for the update of IAEA TRS-398

The IAEA is currently coordinating a multi-year project to update the TRS-398 Code of Practice for the dosimetry of external beam radiotherapy based on standards of absorbed dose to water. One major aspect of the project is the determination of new beam quality correction factors, kQ, for megavoltage photon beams consistent with developments in radiotherapy dosimetry and technology since the publication of TRS-398 in 2000. Specifically, all values must be based on, or consistent with, the key data of ICRU Report 90. Data sets obtained from Monte Carlo (MC) calculations by advanced users and measurements at primary standards laboratories have been compiled for 23 cylindrical ionization chamb…

research product

Design and realization of a portable multichannel continuous wave fNIRS

A design and implementation of a portable functional Near InfraRed Spectroscopy embedded system prototype is described. In this theoretical and experimental work, we present an embedded system hosting 64 LED sources and 128 Silicon PhotoMultiplier detectors (SiPM). The elementary part of the structure is a flexible probe “leaf” consisting of 16 SiPMs, 4 couples of LEDs, each operating at two wavelengths, and a temperature sensor. The hardware system is based on an ARM main microcontroller that allows to perform both the switching time of LEDs and the acquisition of the SiPM outputs. The performed preliminary experimental tests achieved very promising results, thus demonstrating the effectiv…

research product

Design and development of a fNIRS system prototype based on SiPM detectors

Functional Near Infrared Spectroscopy (fNIRS) uses near infrared sources and detectors to measure changes in absorption due to neurovascular dynamics in response to brain activation. The use of Silicon Photomultipliers (SiPMs) in a fNIRS system has been estimated potentially able to increase the spatial resolution. Dedicated SiPM sensors have been designed and fabricated by using an optimized process. Electrical and optical characterizations are presented. The design and implementation of a portable fNIRS embedded system, hosting up to 64 IR-LED sources and 128 SiPM sensors, has been carried out. The system has been based on a scalable architecture whose elementary leaf is a flexible board …

research product

Partial discharges on IGBT modules: Are sinusoidal waveforms sufficient to evaluate behavior?

In recent years, the increasing use of AC-DC converters, especially in the field of renewable energy sources has led to the implementation of new modulation techniques, in particular the ones based on the pulse width modulation. The purpose of the present work is to verify the different behavior that is obtained when the components are subjected to the partial discharge test carried out with a sinusoidal waveform, and when they are subjected to PWM stress-type, similar to the actual signal generated by this type of electronic components. By considering equal rms value of the fundamental sine wave, the comparison has shown different partial discharges patterns.

research product

Brain Monitoring Via an Innovative CW-FNIRS System

Functional Near InfraRed Spectroscopy (fNIRS) is an imaging technique mainly devoted to human brain monitoring. It is used as a non-invasive technique, in medical field, in order to measure the oxygen concentration of blood. This because the relatively good transparency of biological materials in the near infrared allows sufficient photon transmission through tissues. Within the so-called fNIRS range (650-900 nm), the main absorbers are blood chromophores, in particular the oxygenated and deoxygenated haemoglobin (HbO2 and Hb, respectively). When two or more wavelengths are used, changes of such chromophores can be computed by employing the modified Beer-Lambert law, thus providing importan…

research product

Design and realization of a portable continuous wave fNIRS

A design and implementation of a portable functional Near InfraRed Spectroscopy embedded system prototype is described. In this theoretical and experimental work, we present an embedded system hosting 64 LED sources and 128 Silicon PhotoMultiplier detectors (SiPM). The elementary part of the structure is a flexible probe “leaf” consisting of 16 SiPMs, 4 couples of LEDs, each operating at two wavelengths, and a temperature sensor. The hardware system is based on an ARM main microcontroller that allows to perform both the switching time of LEDs and the acquisition of the SiPM outputs. The performed preliminary experimental tests achieved very promising results, thus demonstrating the effectiv…

research product

Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3a

Abbott, R., et al. (LIGO and VIRGO Collaboration)

research product