0000000000772696

AUTHOR

Juan Arocas

showing 13 related works from this author

Supercontinuum generation in titanium dioxide waveguides

2019

International audience; Optical supercontinua are a fundamental topic that has stimulated a tremendous practical interest since the early works of Alfano et al. in the 70’s in bulk components. Photonic crystal fibers have then brought some remarkable potentialities in tailoring the dispersive properties of a waveguide while maintaining a high level of confinement over significant propagation distances. The next breakthrough is to further reduce the footprint of the nonlinear component and to achieve the generation of optical supercontinuum on a photonic chip. To reach this aim, several platforms have been successfully investigated such as silicon, silicon germanium, silicon nitride, chalcog…

010309 optics[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]0103 physical sciencesPhysics::Optics02 engineering and technology021001 nanoscience & nanotechnology0210 nano-technology7. Clean energy01 natural sciencesComputingMilieux_MISCELLANEOUS
researchProduct

Demonstration of high speed optical transmission at 2 µm in various material based waveguides

2018

International audience

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]ComputingMilieux_MISCELLANEOUS
researchProduct

Evaluating plasmonic transport in current-carrying silver nanowires

2013

cited By 1; International audience; Plasmonics is an emerging technology capable of simultaneously transporting a plasmonic signal and an electronic signal on the same information support1,2,3. In this context, metal nanowires are especially desirable for realizing dense routing networks4. A prerequisite to operate such shared nanowire-based platform relies on our ability to electrically contact individual metal nanowires and efficiently excite surface plasmon polaritons5 in this information support. In this article, we describe a protocol to bring electrical terminals to chemically-synthesized silver nanowires6 randomly distributed on a glass substrate7. The positions of the nanowire ends …

Optics and PhotonicsSilverMaterials scienceGeneral Chemical EngineeringNanowireMetal Nanoparticles02 engineering and technology010402 general chemistry[ CHIM ] Chemical Sciences01 natural sciencesGeneral Biochemistry Genetics and Molecular Biology[CHIM]Chemical SciencesSurface plasmon resonancePlasmonGeneral Immunology and MicrobiologyNanowiresbusiness.industryPhysicsGeneral NeuroscienceSurface plasmonElectric ConductivityPlasmonic CircuitrySurface Plasmon Resonance021001 nanoscience & nanotechnology0104 chemical sciencesNanolithographyResistOptoelectronics0210 nano-technologybusinessLocalized surface plasmon
researchProduct

Octave Spanning Supercontinuum in Titanium Dioxide Waveguides

2018

International audience; We report on the experimental generation of an octave-spanning supercontinuum in a 2.2 cm-long titanium dioxide optical waveguide with two zero dispersion wavelengths. The resulting on-chip supercontinuum reaches the visible wavelength range as well as the mid-infrared region by using a femtosecond fiber laser pump at 1.64 µm.

integrated optics; supercontinuum generation; titanium dioxidePhysics::Optics02 engineering and technologyFemtosecond fiber laser01 natural sciences7. Clean energylcsh:Technologylaw.inventionlcsh:Chemistrychemistry.chemical_compoundlawDispersion (optics)General Materials ScienceInstrumentationlcsh:QH301-705.5ComputingMilieux_MISCELLANEOUSFluid Flow and Transfer Processes[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]General Engineering021001 nanoscience & nanotechnologylcsh:QC1-999Computer Science ApplicationsWavelengthintegrated opticsFemtosecondOptoelectronicsIntegrated optics0210 nano-technologyVisible spectrum[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Materials scienceAstrophysics::Cosmology and Extragalactic AstrophysicsOctave (electronics)010309 optics0103 physical sciencesSelf-phase modulationsupercontinuum generationbusiness.industrytitanium dioxidelcsh:TProcess Chemistry and TechnologyLaserSupercontinuumchemistrylcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Titanium dioxidebusinesslcsh:Engineering (General). Civil engineering (General)Refractive indexlcsh:PhysicsApplied Sciences
researchProduct

Titanium Dioxide Waveguides for Data Transmissions at 1.55 µm and 1.98 µm

2017

International audience; We demonstrate error free transmissions of 10 Gbps signals in titanium dioxide waveguides at wavelengths of 1.55 or 2 µm. An efficient coupling of light is achieved thanks to metal grating couplers and we have checked that the component could be used with standard CWDM SFP+ devices.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Materials scienceOptical fiberchemistry.chemical_element02 engineering and technology7. Clean energy01 natural scienceslaw.invention010309 opticschemistry.chemical_compound020210 optoelectronics & photonicsOpticslawWavelength-division multiplexing0103 physical sciences0202 electrical engineering electronic engineering information engineeringmetal grating couplersCoupling[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryMetal gratingWavelengthchemistryTitanium dioxideIntegrated opticsbusinessmid-infrared telecommunicationsTitanium Dioxide waveguidesTitanium
researchProduct

Colloidal Quantum Dot Integrated Light Sources for Plasmon Mediated Photonic Waveguide Excitation

2016

We operate micron-sized CdSe/CdS core–shell quantum dot (QD) clusters deposited onto gold patches as integrated light sources for the excitation of photonic waveguides. The surface plasmon mode launched by the QD fluorescence at the top interface of the gold patches are efficiently coupled to photonic modes sustained by titanium dioxide ridge waveguides. We show that, despite a large effective index difference, the plasmonic and the photonic modes can couple with a very high efficiency provided the vertical offset between the two kinds of waveguides is carefully controlled. Based on the effective index contrast of the plasmonic and the photonic modes, we engineer in-plane integrated hybrid …

Materials sciencePhysics::Optics02 engineering and technology01 natural scienceslaw.invention010309 opticsOpticslaw0103 physical sciencesElectrical and Electronic EngineeringPlasmonbusiness.industryPhotonic integrated circuitSurface plasmon021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsLens (optics)Quantum dotOptoelectronicsPhotonics0210 nano-technologybusinessWaveguideExcitationBiotechnologyACS Photonics
researchProduct

Exploring 10 Gb/s transmissions in Titanium dioxide based waveguides at 1.55 pm and 2.0 pm

2017

Exploring new spectral bands for optical transmission is one of the solutions to support the increasingly demand of data traffic. The recent development of dedicated hollow-core photonic bandgap fibers [1], associated to the emergence of thulium doped fiber amplifiers [2] has recently focused the attention further in the infrared, and more specifically around 2 μm. Regarding integrated photonics, it becomes therefore interesting to find a suitable platform to operate at 2 μm as well as in the other more conventional spectral bands (going from 800 nm to 1550 nm). Here, we propose titanium dioxide (TiO 2 ) as a good candidate for integrated waveguide photonics and demonstrate, for the first t…

Materials sciencebusiness.industryInfraredchemistry.chemical_element02 engineering and technologySpectral bands01 natural sciencesWaveguide (optics)010309 opticschemistry.chemical_compound020210 optoelectronics & photonicsOpticsThuliumchemistryEtching (microfabrication)0103 physical sciencesTitanium dioxide0202 electrical engineering electronic engineering information engineeringOptoelectronicsPhotonicsbusinessElectron-beam lithography2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)
researchProduct

Thermo-electric detection of waveguided surface plasmon propagation

2011

International audience; The thermo-electric detection of a waveguided surface plasmon traveling along one electrode of an in-plane integrated thermocouple is demonstrated. By using a particular design of the thermocouple, the thermo-electric signal due to the losses of the plasmon mode can be separated from the non-resonant heating of the waveguide. The thermo-electric signal associated with the plasmon propagation is proportional to the power coupled into the waveguided mode and exhibits a maximum at a distance from the excitation site depending on both the heat transfer coefficient of the system and the plasmon mode damping distance.

Materials sciencePhysics and Astronomy (miscellaneous)business.industrySurface plasmonNanophotonicsPhysics::Optics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences7. Clean energySignalWaveguide (optics)Surface plasmon polaritonOptics0103 physical sciencesOptoelectronics[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsSurface plasmon resonance[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physics0210 nano-technologybusinessPlasmonLocalized surface plasmon
researchProduct

Titanium dioxide waveguides for supercontinuum generation and optical transmissions in the near-and mid-infrared

2019

International audience; We report the development of titanium dioxide-based waveguides for applications in the near-and mid-infrared. Thanks to embedded metal grating couplers, we demonstrate error free 10 Gbit/s optical transmissions at 1.55 and 2 µm. With additional management of the dispersion profile, we also demonstrate octave spanning supercontinuum in cm-long TiO2 waveguides.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Materials scienceInfraredOptical communication02 engineering and technologySupercontinuum generationOctave (electronics)01 natural sciences010309 opticschemistry.chemical_compound0103 physical sciencesDispersion (optics)Adaptive opticsOptical CommunicationsNonlinear integrated optics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryNonlinear optics021001 nanoscience & nanotechnologySupercontinuumchemistryTitanium dioxideIntegrated optical materialsOptoelectronics0210 nano-technologybusinessTitanium Dioxide waveguides
researchProduct

Electrical excitation of surface plasmons by an individual carbon nanotube transistor.

2013

We demonstrate here the realization of an integrated, electrically driven, source of surface plasmon polaritons. Light-emitting individual single-walled carbon nanotube field effect transistors were fabricated in a plasmonic-ready platform. The devices were operated at ambient conditions to act as an electroluminescence source localized near the contacting gold electrodes. We show that photon emission from the semiconducting channel can couple to propagating surface plasmons developing in the electrical terminals. Our results show that a common functional element can be operated for two different platforms emphasizing thus the high degree of compatibility between state-of-the-art nano-optoe…

Materials sciencebusiness.industrySurface plasmonTransistorPhysics::OpticsGeneral Physics and AstronomyCarbon nanotubeElectroluminescenceSurface plasmon polaritonlaw.inventionlawElectrodeOptoelectronicsField-effect transistorbusinessPlasmonPhysical review letters
researchProduct

Réseaux métalliques pour le couplage dans des guides en dioxyde de titane

2016

National audience; Nous montrons la fabrication de réseaux métalliques enterrés entre deux couches de dioxyde de titane. En utilisant un supercontinuum, nous démontrons expérimentalement une efficacité de couplage supérieure à -8 dB pour une bande passante à 3 dB supérieure à 80 nm.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]TiO2couplage par réseaux
researchProduct

Octave-spanning supercontinuum generation in titanium dioxide waveguides

2018

International audience

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]ComputingMilieux_MISCELLANEOUS
researchProduct

Exploring 10 Gb/s transmissions in Titanium dioxide based waveguides at 1.55 µm and 2.0 µm

2017

International audience

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]ComputingMilieux_MISCELLANEOUS
researchProduct