0000000000773157

AUTHOR

Jagath Sri Lal Senanyaka

0000-0001-6324-801x

showing 4 related works from this author

A Two-Stage Fault Detection and Classification Scheme for Electrical Pitch Drives in Offshore Wind Farms Using Support Vector Machine

2019

Pitch systems are one of the components with the most frequent failure in wind turbines. This paper presents a two-stage fault detection and classification scheme for electric motor drives in wind turbine pitch systems. The presented approach is suitable for application in offshore wind farms with electric pitch systems driven by induction motors as well as permanent magnet synchronous motors. The adopted strategy utilizes three-phase motor current sensing at the pitch drives for fault detection and only when a fault condition is detected at this stage, features extracted from the current signals are transmitted to a support vector machine classifier located centrally to the wind farm. The …

Electric motorWind powerbusiness.industryComputer science020209 energy020208 electrical & electronic engineeringCondition monitoring02 engineering and technologyFault (power engineering)TurbineIndustrial and Manufacturing EngineeringAutomotive engineeringFault detection and isolationOffshore wind powerControl and Systems Engineering0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringbusinessInduction motorIEEE Transactions on Industry Applications
researchProduct

Multiple Classifiers and Data Fusion for Robust Diagnosis of Gearbox Mixed Faults

2019

Detection and isolation of single and mixed faults in a gearbox are very important to enhance the system reliability, lifetime, and service availability. This paper proposes a hybrid learning algorithm, consisting of multilayer perceptron (MLP)- and convolutional neural network (CNN)-based classifiers, for diagnosis of gearbox mixed faults. Domain knowledge features are required to train the MLP classifier, while the CNN classifier can learn features itself, allowing to reduce the required knowledge features for the counterpart. Vibration data from an experimental setup with gearbox mixed faults is used to validate the effectiveness of the algorithms and compare them with conventional metho…

business.industryComputer science020208 electrical & electronic engineeringFeature extractionPattern recognition02 engineering and technologySensor fusionConvolutional neural networkComputer Science ApplicationsStatistical classificationControl and Systems EngineeringRobustness (computer science)Multilayer perceptron0202 electrical engineering electronic engineering information engineeringArtificial intelligenceElectrical and Electronic EngineeringbusinessClassifier (UML)Information SystemsIEEE Transactions on Industrial Informatics
researchProduct

Mixed Fault Classification of Sensorless PMSM Drive in Dynamic Operations Based on External Stray Flux Sensors

2022

This paper aims to classify local demagnetisation and inter-turn short-circuit (ITSC) on position sensorless permanent magnet synchronous motors (PMSM) in transient states based on external stray flux and learning classifier. Within the framework, four supervised machine learning tools were tested: ensemble decision tree (EDT), k-nearest neighbours (KNN), support vector machine (SVM), and feedforward neural network (FNN). All algorithms are trained on datasets from one operational profile but tested on other different operation profiles. Their input features or spectrograms are computed from resampled time-series data based on the estimated position of the rotor from one stray flux sensor t…

Support Vector Machinedemagnetisationinter-turn short circuitChemical technologydemagnetisation; inter-turn short circuit; machine learning; permanent magnet synchronous motor; variable speed; variable loadTP1-1185BiochemistryAtomic and Molecular Physics and OpticsAnalytical ChemistryComputingMethodologies_PATTERNRECOGNITIONmachine learningpermanent magnet synchronous motorvariable speedVDP::Teknologi: 500::Maskinfag: 570Magnetsvariable loadNeural Networks ComputerSupervised Machine LearningElectrical and Electronic EngineeringInstrumentationAlgorithmsSensors (Basel, Switzerland)
researchProduct

Toward Self-Supervised Feature Learning for Online Diagnosis of Multiple Faults in Electric Powertrains

2021

This article proposes a novel online fault diagnosis scheme for industrial powertrains without using historical faulty or labeled training data. The proposed method combines a one-class support vector machine (SVM) based anomaly detection and supervised convolutional neural network (CNN) algorithms to online detect multiple faults and fault severities under variable speeds and loads. The one-class SVM algorithm is to derive a score for defining faults or health classes in the first stage, and the resulting health classes are used as the training data for the CNN-based classifier in the second stage. Within this framework, the self-supervised learning of the proposed CNN algorithm allows the…

Scheme (programming language)business.industryComputer science020208 electrical & electronic engineering02 engineering and technologyMachine learningcomputer.software_genreFault (power engineering)Convolutional neural networkComputer Science ApplicationsSupport vector machineStatistical classificationControl and Systems EngineeringClassifier (linguistics)0202 electrical engineering electronic engineering information engineeringAnomaly detectionArtificial intelligenceElectrical and Electronic EngineeringbusinesscomputerFeature learningInformation Systemscomputer.programming_languageIEEE Transactions on Industrial Informatics
researchProduct