0000000000773232

AUTHOR

Marvin Schnubel

0000-0002-1840-1377

Axionlike Particles, Lepton-Flavor Violation, and a New Explanation of aμ and ae

Axionlike particles (ALPs) with lepton-flavor-violating couplings can be probed in exotic muon and tau decays. The sensitivity of different experiments depends strongly on the ALP mass and its couplings to leptons and photons. For ALPs that can be resonantly produced, the sensitivity of three-body decays such as μ→3e and τ→3μ exceeds by many orders of magnitude that of radiative decays like μ→eγ and τ→μγ. Searches for these two types of processes are therefore highly complementary. We discuss experimental constraints on ALPs with a single dominant lepton-flavor-violating coupling. Allowing for one or more such couplings offers qualitatively new ways to explain the anomalies related to the m…

research product

Consistent Treatment of Axions in the Weak Chiral Lagrangian.

We present a consistent implementation of weak decays involving an axion or axion-like particle in the context of an effective chiral Lagrangian. We argue that previous treatments of such processes have used an incorrect representation of the flavor-changing quark currents in the chiral theory. As an application, we derive model-independent results for the decays $K^-\to\pi^- a$ and $\pi^-\to e^-\bar\nu_e a$ at leading order in the chiral expansion and for arbitrary axion couplings and mass. In particular, we find that the $K^-\to\pi^- a$ branching ratio is almost 40 times larger than previously estimated.

research product