0000000000773249

AUTHOR

Klaus-j. Mieseke

showing 1 related works from this author

Bayesian subset selection for additive and linear loss function

1979

Given k independent samples of common size n from k populations πj,…,πk with distribution the problem is to select a non-empty subset form {πj,…,πk}, which is associated with "good" (large) θ-values. We consider this problem from a Bayesian approach. By choosing additive and especially linear loss functions we try to fill a gap lying in between the results of Deely and Gupta (1968) and more recent papers due to Goel and Rubin (1977), Gupta and Hsu (1978) and other authors. It is shown that under acertain "normal model" Seal's procedure turns out to be Bayes w.r.t. an unrealistic loss function where as Gupta's maximunl means procedure turns out to be ( for large n) asymptotically Bayes w.r. …

Statistics and ProbabilityCombinatoricsBayes' theoremDistribution (mathematics)Selection (relational algebra)Bayesian probabilityStatisticsGoelKalman filterFunction (mathematics)RegressionMathematicsCommunications in Statistics - Theory and Methods
researchProduct