0000000000773765

AUTHOR

Laura Laverdure

Computational Criteria for Hydrogen Evolution Activity on Ligand-Protected Au25-Based Nanoclusters

The hydrogen evolution reaction (HER) is a critical reaction in addressing climate change; however, it requires catalysts to be generated on an industrial scale. Nanomaterials offer several advantages over conventional HER catalysts, including the possibility of atomic precision in tailoring the intrinsic activity. Ligand-protected metal clusters, such as the thiolate-protected MAu24(SR)18 (where M is Au, Cu, Pd), are of particular interest as not only are they electrocatalytically active toward HER, but the charge state and composition can be precisely tuned. Here, we present a comprehensive computational study examining how the charge state and dopants affect the catalytic activity of [MA…

research product

Mechanistic Origins of the pH Dependency in Au-Catalyzed Glycerol Electro-oxidation: Insight from First-Principles Calculations

Electrocatalytic oxidation of glycerol (EOG) is an attractive approach to convert surplus glycerol to value-added products. Experiments have shown that EOG activity and selectivity depend not only on the electrocatalyst but also on the electrode potential, the pH, and the electrolyte. For broadly employed gold (Au) electrocatalysts, experiments have demonstrated high EOG activity under alkaline conditions with glyceric acid as a primary product, whereas under acidic and neutral conditions Au is almost inactive producing only small amounts of dihydroxyacetone. In the present computational work, we have performed an extensive mechanistic study to understand the pH and potential dependency of …

research product

On the Mechanistic Origins of the pH-Dependency in Au-Catalyzed Glycerol Electro-Oxidation: Insight from First Principles Calculations

Electrocatalytic oxidation of glycerol (EOG) is an attractive approach to convert surplus glycerol to value-added products. Experiments have shown that EOG activity and selectivity depend on the electrocatalyst, but also on the electrode potential, the pH, and the electrolyte. For broadly employed gold (Au) electrocatalysts, experiments have demonstrated high EOG activity under alkaline conditions with glyceric acid as a primary product, whereas under acidic and neutral conditions Au is almost inactive producing only small amounts of dihydroxyacetone. In the present computational work, we have performed an extensive mechanistic study to understand the pH- and potential- dependency of Au-cat…

research product