0000000000773800

AUTHOR

Andrés Jurado-rodríguez

In vivo and ex vivo magnetic resonance spectroscopy of the infarct and the subventricular zone in experimental stroke

Ex vivo high-resolution magic-angle spinning (HRMAS) provides metabolic information with higher sensitivity and spectral resolution than in vivo magnetic resonance spectroscopy (MRS). Therefore, we used both techniques to better characterize the metabolic pattern of the infarct and the neural progenitor cells (NPCs) in the ipsilateral subventricular zone (SVZi). Ischemic stroke rats were divided into three groups: G0 (non-stroke controls, n = 6), G1 (day 1 after stroke, n = 6), and G7 (days 6 to 8 after stroke, n =12). All the rats underwent MRS. Three rats per group were analyzed by HRMAS. The remaining rats were used for immunohistochemical studies. In the infarct, both techniques detect…

research product

Molecular mechanisms mediating the neuroprotective role of the selective estrogen receptor modulator, bazedoxifene, in acute ischemic stroke: A comparative study with 17β-estradiol

As the knowledge on the estrogenic system in the brain grows, the possibilities to modulate it in order to afford further neuroprotection in brain damaging disorders so do it. We have previously demonstrated the ability of the selective estrogen receptor modulator, bazedoxifene (BZA), to reduce experimental ischemic brain damage. The present study has been designed to gain insight into the molecular mechanisms involved in such a neuroprotective action by investigating: 1) stroke-induced apoptotic cell death; 2) expression of estrogen receptors (ER) ERα, ERβ and the G-protein coupled estrogen receptor (GPER); and 3) modulation of MAPK/ ERK1/2 and PI3K/Akt signaling pathways. For comparison, …

research product