0000000000775240

AUTHOR

Marc Sanquer

showing 2 related works from this author

Design and operation of CMOS-compatible electron pumps fabricated with optical lithography

2017

We report CMOS-compatible quantized current sources (electron pumps) fabricated with nanowires (NWs) on 300mm SOI wafers. Unlike other Al, GaAs or Si based metallic or semiconductor pumps, the fabrication does not rely on electron-beam lithography. The structure consists of two gates in series on the nanowire and the only difference with the SOI nanowire process lies in long (40nm) nitride spacers. As a result a single, silicide island gets isolated between the gates and transport is dominated by Coulomb blockade at cryogenic temperatures thanks to the small size and therefore capacitance of this island. Operation and performances comparable to devices fabricated using e-beam lithography is…

Materials science[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsNanowireSilicon on insulatorPhysics::OpticsFOS: Physical sciences02 engineering and technology7. Clean energy01 natural sciencesCapacitancelaw.inventionOptical pumpingCondensed Matter::Materials Sciencelaw0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Electrical and Electronic Engineering[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]010306 general physicsLithographyComputingMilieux_MISCELLANEOUSCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryCoulomb blockade021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectElectronic Optical and Magnetic MaterialsComputer Science::OtherCMOSOptoelectronicsPhotolithography0210 nano-technologybusiness[PHYS.COND] Physics [physics]/Condensed Matter [cond-mat]
researchProduct

Dopant-controlled single-electron pumping through a metallic island

2016

We investigate a hybrid metallic island/single dopant electron pump based on fully depleted silicon-on-insulator technology. Electron transfer between the central metallic island and the leads is controlled by resonant tunneling through single phosphorus dopants in the barriers. Top gates above the barriers are used to control the resonance conditions. Applying radio frequency signals to the gates, non-adiabatic quantized electron pumping is achieved. A simple deterministic model is presented and confirmed by comparing measurements with simulations.

Materials sciencePhysics and Astronomy (miscellaneous)FOS: Physical sciencesSilicon on insulator02 engineering and technologyElectron01 natural sciences[PHYS] Physics [physics]MetalElectron transferMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]010306 general physicsComputingMilieux_MISCELLANEOUS[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]Quantum tunnelling[PHYS]Physics [physics]Condensed Matter - Mesoscale and Nanoscale PhysicsDopantbusiness.industryResonance021001 nanoscience & nanotechnology[PHYS.COND.CM-MSQHE] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]visual_artvisual_art.visual_art_mediumOptoelectronicsRadio frequency0210 nano-technologybusiness[PHYS.COND] Physics [physics]/Condensed Matter [cond-mat]Applied Physics Letters
researchProduct