Entanglement Properties and Phase Diagram of the Two-Orbital Atomic Hubbard Model
We study the two-orbital Hubbard model in the limit of vanishing kinetic energy. The phase diagram in the $V-J$ plane, with $V$ and $J$ denoting the interorbital hybridization and exchange coupling respectively, at half filling is obtained. A singlet(dimer)-triplet transition is found for a critical value of the ratio $V/J.$ The entropy of formation, both in the mode and in the particle picture, presents a jump as the same critical line in conformity with the suggested relation between criticality and entanglement.