0000000000775436
AUTHOR
Amanda Randles
showing 1 related works from this author
High-Reynolds-number turbulent cavity flow using the lattice Boltzmann method
2018
We present a boundary condition scheme for the lattice Boltzmann method that has significantly improved stability for modeling turbulent flows while maintaining excellent parallel scalability. Simulations of a three-dimensional lid-driven cavity flow are found to be stable up to the unprecedented Reynolds number $\mathrm{Re}=5\ifmmode\times\else\texttimes\fi{}{10}^{4}$ for this setup. Excellent agreement with energy balance equations, computational and experimental results are shown. We quantify rises in the production of turbulence and turbulent drag, and determine peak locations of turbulent production.