6533b831fe1ef96bd1299140

RESEARCH PRODUCT

High-Reynolds-number turbulent cavity flow using the lattice Boltzmann method

Daniel F. PuleriMauro SbragagliaAmanda RandlesKeijo MattilaKeijo MattilaAndrea ScagliariniLuiz Adolfo HegeleLuiz Adolfo HegelePaulo Cesar PhilippiJohn Gounley

subject

virtauslaskentaLattice Boltzmann methodsEnergy balance01 natural sciencesStability (probability)010305 fluids & plasmasPhysics::Fluid Dynamicssymbols.namesaketurbulenssi0103 physical sciencesBoundary value problem010306 general physicsPhysicsta114numeeriset menetelmätTurbulenceBoltzmann methodReynolds numberMechanicscavity flowSettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciDragsymbolsProduction (computer science)Computational fluid dynamics; Lattice Boltzmann Methods; Turbulent cavity flowsdifferentiaaliyhtälöt

description

We present a boundary condition scheme for the lattice Boltzmann method that has significantly improved stability for modeling turbulent flows while maintaining excellent parallel scalability. Simulations of a three-dimensional lid-driven cavity flow are found to be stable up to the unprecedented Reynolds number $\mathrm{Re}=5\ifmmode\times\else\texttimes\fi{}{10}^{4}$ for this setup. Excellent agreement with energy balance equations, computational and experimental results are shown. We quantify rises in the production of turbulence and turbulent drag, and determine peak locations of turbulent production.

10.1103/physreve.98.043302https://publications.cnr.it/doc/395784