0000000000775635
AUTHOR
Xavier Tolsa
A proof of Carleson's $\varepsilon^2$-conjecture
In this paper we provide a proof of the Carleson $\varepsilon^2$-conjecture. This result yields a characterization (up to exceptional sets of zero length) of the tangent points of a Jordan curve in terms of the finiteness of the associated Carleson $\varepsilon^2$-square function.
Analytic capacity and quasiconformal mappings with $W^{1,2}$ Beltrami coefficient
We show that if $\phi$ is a quasiconformal mapping with compactly supported Beltrami coefficient in the Sobolev space $W^{1,2}$, then $\phi$ preserves sets with vanishing analytic capacity. It then follows that a compact set $E$ is removable for bounded analytic functions if and only if it is removable for bounded quasiregular mappings with compactly supported Beltrami coefficient in $W^{1,2}$.
A proof of Carleson's 𝜀2-conjecture
In this paper we provide a proof of the Carleson 𝜀2-conjecture. This result yields a characterization (up to exceptional sets of zero length) of the tangent points of a Jordan curve in terms of the finiteness of the associated Carleson 𝜀2-square function. peerReviewed