0000000000776100

AUTHOR

Goëry Genty

showing 28 related works from this author

Higher-order modulation instability in fiber optics

2012

We report on analytical, numerical and experimental studies of higher-order modulation instability in fiber optics. This new form of instability arises from the nonlinear superposition of elementary instabilities and manifests as complex, yet deterministic temporal pulse break-up dynamics. We use the Darboux transformation to analytically describe the process and compare with experiments. In particular, we show how suitably low frequency modulation on a continuous wave field allows for the excitation of higher-order modulation instability through cascaded four-wave mixing.

PhysicsOptical fiberbusiness.industryInstabilitylaw.inventionPulse (physics)Amplitude modulationFour-wave mixingOpticsClassical mechanicsModulationlawbusinessHigher-order modulationFrequency modulation2012 14th International Conference on Transparent Optical Networks (ICTON)
researchProduct

Observation of Kuznetsov-Ma soliton dynamics in optical fibre

2012

International audience; The nonlinear Schro¨dinger equation (NLSE) is a central model of nonlinear science, applying to hydrodynamics, plasma physics, molecular biology and optics. The NLSE admits only few elementary analytic solutions, but one in particular describing a localized soliton on a finite background is of intense current interest in the context of understanding the physics of extreme waves. However, although the first solution of this type was the Kuznetzov-Ma (KM) soliton derived in 1977, there have in fact been no quantitative experiments confirming its validity. We report here novel experiments in optical fibre that confirm the KM soliton theory, completing an important serie…

Current (mathematics)Context (language use)Type (model theory)01 natural sciencesArticle010305 fluids & plasmasPhysical Phenomenasymbols.namesake0103 physical sciencesComputer SimulationRogue wave010306 general physicsNonlinear Schrödinger equationNonlinear Sciences::Pattern Formation and SolitonsOptical FibersComputingMilieux_MISCELLANEOUSPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Multidisciplinary[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Series (mathematics)Models TheoreticalNonlinear systemClassical mechanicsNonlinear Sciences::Exactly Solvable and Integrable SystemsNonlinear DynamicssymbolsSolitonAlgorithmsScientific Reports 2, 463
researchProduct

Predicting ultrafast nonlinear dynamics in optical fiber using neural networks

2021

We show how neural networks can be used to model complex and predict nonlinear propagation dynamics in optical fibres for a widerange of input conditions and fibre systems, including pulse compression, ultra-broadband supercontinuum generation, and multimode fiber systems. Our results open up novel perspectives to model and optimize complex nonlinear dynamics and systems.

Optical fiberNonlinear phenomenaMaterials scienceMulti-mode optical fiberArtificial neural networkbusiness.industryPhysics::Opticslaw.inventionSupercontinuumNonlinear systemlawPulse compressionOptoelectronicsbusinessUltrashort pulseFiber Lasers XVIII: Technology and Systems
researchProduct

The dynamics of a developing CW supercontinuum: Analytical predictions and experiments

2010

International audience; We show that the development of the supercontinuum spectrum in the quasi-CW regime can be interpreted analytically in terms of Akhmediev Breathers. Theory and experiment are in excellent agreement.

Temporal solitonsOptical fiberBreather02 engineering and technologySupercontinuum generation01 natural scienceslaw.inventionOpticslaw0103 physical sciences0202 electrical engineering electronic engineering information engineering010306 general physicsPhotonic crystalPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Fiber nonlinear opticsbusiness.industry020208 electrical & electronic engineeringUltrafast opticsSupercontinuumComputational physicsPulse propagationPhotonic crystal fibers[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicPulse propagation[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicbusinessPhotonic-crystal fiber
researchProduct

Kuznetsov-Ma Soliton Dynamics in Nonlinear Fiber Optics

2012

The Kuznetzov-Ma (KM) soliton is a solution of the nonlinear Schrodinger equation derived in 1977 but never observed experimentally. Here we report experiments showing KM soliton dynamics in nonlinear breather evolution in optical fiber.

PhysicsOptical fiberComputer simulationBreatherNonlinear opticslaw.inventionNonlinear systemsymbols.namesakeNonlinear Sciences::Exactly Solvable and Integrable SystemslawQuantum mechanicssymbolsPeregrine solitonSolitonNonlinear Sciences::Pattern Formation and SolitonsNonlinear Schrödinger equationAdvanced Photonics Congress
researchProduct

Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation

2009

Numerical simulations of the onset phase of continuous wave supercontinuum generation from modulation instability show that the structure of the field as it develops can be interpreted in terms of the properties of Akhmediev Breathers. Numerical and analytical results are compared with experimental measurements of spectral broadening in photonic crystal fiber using nanosecond pulses

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]BreatherPhysics::OpticsFOS: Physical sciencesNanosecond01 natural sciencesInstabilityAtomic and Molecular Physics and OpticsComputational physicsSupercontinuum010309 opticsModulation0103 physical sciencesContinuous wave010306 general physicsPhysics - OpticsPhotonic-crystal fiberDoppler broadeningOptics (physics.optics)
researchProduct

Higher-order modulation instability in optical fibers

2012

International audience; We report on theoretical, numerical and experimental study of a new form of instability in a nonlinear fiber. This process of higher-order modulation instability arises from the nonlinear superposition of elementary instability dynamics.

Physics[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Optical fiber[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Cross-phase modulationNonlinear opticsSoliton (optics)MechanicsInstability3. Good healthlaw.inventionModulational instabilitylawModulationQuantum mechanicsHigher-order modulation
researchProduct

Supercontinuum to solitons: New nonlinear structures in fiber propagation

2010

We review our recent work in the field of optical rogue wave physics and applications. Beginning from a brief survey of the well-known noise and incoherence processes in optical fiber supercontinuum generation, we trace the links to recent developments in studying the emergence of high contrast localised breather structures in both spontaneous and induced nonlinear instabilities. In the latter case, we discuss our recent measurements that have reported the experimental observation of the Peregrine soliton, a unique class of rational soliton predicted to exist over 25 years ago and never previously observed.

PhysicsOptical fiberbusiness.industryBreatherPhysics::Opticslaw.inventionSupercontinuumOpticslawQuantum electrodynamicsPeregrine solitonSolitonRogue wavePhotonicsbusinessNonlinear Sciences::Pattern Formation and SolitonsNoise (radio)2010 Photonics Global Conference
researchProduct

Nonlinear spectral shaping and optical rogue events in fiber-based systems

2012

International audience; We provide an overview of our recent work on the shaping and stability of optical continua in the long pulse regime. Fibers with normal group-velocity dispersion at all-wavelengths are shown to allow for highly coherent continua that can be nonlinearly shaped using appropriate initial conditions. In contrast, supercontinua generated in the anomalous dispersion regime are shown to exhibit large fluctuations in the temporal and spectral domains that can be controlled using a carefully chosen seed. A particular example of this is the first experimental observation of the Peregrine soliton which constitutes a prototype of optical rogue-waves.

Optical fiberPhysics::Optics02 engineering and technology01 natural sciencesStability (probability)law.invention010309 optics020210 optoelectronics & photonicsOpticslaw0103 physical sciencesDispersion (optics)0202 electrical engineering electronic engineering information engineeringFiberElectrical and Electronic EngineeringInstrumentationPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryPulse shapingAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsSupercontinuumNonlinear systemControl and Systems EngineeringPeregrine solitonbusiness
researchProduct

Roadmap on optical rogue waves and extreme events

2016

Nail Akhmediev et al. ; 38 págs.; 28 figs.

:Ciències de la visió::Òptica física [Àrees temàtiques de la UPC]extreme eventsNonlinear opticsFreak-wavesProcess (engineering)Subject (philosophy)Supercontinuum generationPeregrine soliton01 natural sciences010309 opticsOptics0103 physical sciencesZero-dispersion wavelength[NLIN]Nonlinear Sciences [physics]Rogue wave010306 general physicsModulation instabilityComputingMilieux_MISCELLANEOUSPhysicsÒptica no lineal:Física [Àrees temàtiques de la UPC]Nonlinear schrodinger-equationbusiness.industryGinzburg-Landau equationnonlinear opticsRogue wavesOptical rogue wavesrogue wavesextreme events; nonlinear optics; rogue wavesExtreme eventsValue statisticsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsVariety (cybernetics)Photonic crystal fibersWork (electrical)Noise-like pulsesPeregrine solitonbusinessScientific terminology
researchProduct

Higher-Order Modulation Instability in Nonlinear Fiber Optics

2011

International audience; We report theoretical, numerical, and experimental studies of higher-order modulation instability in the focusing nonlinear Schrödinger equation. This higher-order instability arises from the nonlinear superposition of elementary instabilities, associated with initial single breather evolution followed by a regime of complex, yet deterministic, pulse splitting. We analytically describe the process using the Darboux transformation and compare with experiments in optical fiber. We show how a suitably low frequency modulation on a continuous wave field induces higher-order modulation instability splitting with the pulse characteristics at different phases of evolution r…

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]BreatherCross-phase modulationGeneral Physics and Astronomy01 natural sciencesInstability010305 fluids & plasmasPulse (physics)Modulational instabilitysymbols.namesakeClassical mechanics0103 physical sciencessymbolsPeregrine soliton010306 general physicsHigher-order modulationNonlinear Schrödinger equation
researchProduct

Optical rogue waves and localized structures in nonlinear fiber optics

2011

We review our recent work in the field of optical rogue wave physics. Beginning from a brief survey of the well-known instabilities in optical fiber, we trace the links to recent developments in studying the emergence of high contrast localized breather structures in both spontaneous and induced nonlinear instabilities.

Physics[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]0303 health sciences[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Optical fiber[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Field (physics)business.industryBreatherPhysics::OpticsNonlinear opticsOptical rogue waves01 natural sciences010305 fluids & plasmaslaw.invention03 medical and health sciencesNonlinear systemOpticslawModulation0103 physical sciencesRogue wavebusinessNonlinear Sciences::Pattern Formation and Solitons030304 developmental biology
researchProduct

Seeded and spontaneous higher-order modulation instability

2012

International audience; We report on the dynamics of the higher-order modulation instability in optical fibers and show that it is the very same phenomenon that underpins the emergence of rogue waves in the early stage of supercontinuum generation.

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Optical fiber[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryPhysics::Optics01 natural sciencesInstabilitylaw.inventionSupercontinuum010309 opticsOpticslawModulation0103 physical sciencesSeedingRogue wave010306 general physicsbusinessHigher-order modulationNonlinear Sciences::Pattern Formation and Solitons
researchProduct

Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability

2016

Modulation instability is a fundamental process of nonlinear science, leading to the unstable breakup of a constant amplitude solution of a physical system. There has been particular interest in studying modulation instability in the cubic nonlinear Schrödinger equation, a generic model for a host of nonlinear systems including superfluids, fibre optics, plasmas and Bose–Einstein condensates. Modulation instability is also a significant area of study in the context of understanding the emergence of high amplitude events that satisfy rogue wave statistical criteria. Here, exploiting advances in ultrafast optical metrology, we perform real-time measurements in an optical fibre system of the u…

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]MultidisciplinaryBreatherScienceQGeneral Physics and AstronomyContext (language use)General Chemistry01 natural sciencesInstability114 Physical sciencesGeneral Biochemistry Genetics and Molecular BiologyArticle010309 opticsNonlinear systemsymbols.namesakeModulational instabilityAmplitude0103 physical sciencessymbolsStatistical physicsRogue wave010306 general physicsNonlinear Schrödinger equation
researchProduct

Real-Time Measurements of Ultrafast Instabilities in Nonlinear Fiber Optics: Recent Advances

2019

Recent years have seen renewed interest in the study of nonlinear fibre laser and propagation dynamics through the use of real-time measurement techniques for non-repetitive ultrafast optical signals. In this paper we review our recent work in this field using dispersive Fourier Transform and Time Lens techniques.

Physics0303 health sciencesOptical fiberField (physics)business.industryNonlinear fiber opticsPhysics::Optics02 engineering and technology021001 nanoscience & nanotechnologylaw.inventionLens (optics)03 medical and health sciencesNonlinear systemsymbols.namesakeOpticsFourier transformlawFiber lasersymbols0210 nano-technologybusinessUltrashort pulse030304 developmental biology2019 21st International Conference on Transparent Optical Networks (ICTON)
researchProduct

The Peregrine soliton in nonlinear fibre optics

2010

International audience; The Peregrine soliton is a localized nonlinear structure predicted to exist over 25 years ago, but not so far experimentally observed in any physical system. It is of fundamental significance because it is localized in both time and space, and because it defines the limit of a wide class of solutions to the nonlinear Schrödinger equation (NLSE). Here, we use an analytic description of NLSE breather propagation to implement experiments in optical fibre generating femtosecond pulses with strong temporal and spatial localization, and near-ideal temporal Peregrine soliton characteristics. In showing that Peregrine soliton characteristics appear with initial conditions th…

Optical fiberGeneral Physics and Astronomy01 natural sciences010305 fluids & plasmaslaw.inventionOpticsNonlinear fibre optics[NLIN.NLIN-PS]Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]law0103 physical sciences[ NLIN.NLIN-PS ] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]Rogue wave010306 general physicsNonlinear Sciences::Pattern Formation and SolitonsPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Spacetimebusiness.industryOptical physicsOptical rogue wavesClassical mechanicsNonlinear Sciences::Exactly Solvable and Integrable SystemsFemtosecondPeregrine solitonbusiness
researchProduct

Wavelength-multiplexed computational temporal ghost imaging

2017

Ghost imaging is a novel imaging technique based on correlation measurements between a structured illumination pattern (the reference) and the total intensity transmitted or reflected by an object [1]. The reference illumination patterns may be either randomly generated by a spatially incoherent light source, or pre-programmed e.g. with a spatial light modulator. Light transmitted (or reflected) by the object is measured by a single-pixel “bucket” detector with null spatial resolution. A unique feature associated with ghost imaging is that (i) neither the bucket detector nor the reference measurement caries enough information to retrieve the object shape and (ii) it is insensitive to distor…

PhysicsSpatial light modulatorNull (radio)business.industryDetector02 engineering and technologyGhost imaging021001 nanoscience & nanotechnology01 natural sciences010309 opticsWavelengthOpticsFeature (computer vision)Temporal resolution0103 physical sciences0210 nano-technologybusinessImage resolution2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)
researchProduct

Supercontinuum spectral-domain ghost imaging

2018

International audience; Ghost imaging is a technique that generates high-resolution images by correlating the intensity of two light beams, neither of which independently contains useful information about the shape of the object. Ghost imaging has been demonstrated in both the spatial and temporal domains, using incoherent classical light sources or entangled photon pairs. Here we exploit the recent progress in ultrafast real-time measurement techniques to demonstrate ultrafast, scan-free, ghost imaging in the frequency domain using a continuous spectrum from an incoherent supercontinuum light source with random spectral fluctuations. We demonstrate the application of this technique to broa…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Photonbusiness.industryGhost imaging01 natural sciencesAtomic and Molecular Physics and OpticsSupercontinuum010309 opticsFour-wave mixingLight intensityOpticsFrequency domain0103 physical sciencesLight beam010306 general physicsbusinessUltrashort pulseOptics Letters
researchProduct

Optical rogue waves: Physics and impact

2011

International audience; We review our recent work in the field of optical rogue wave physics and applications. Beginning from a brief survey of the well-known instabilities in optical fiber supercontinuum generation, we trace the links to recent developments in studying the emergence of high contrast localized breather structures in both spontaneous and induced nonlinear instabilities. We also discuss the precise nature of optical rogue wave statistics and examine the dynamics leading to the formation of extreme events in the context of noise-driven supercontinuum generation.

Physics[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]High contrast[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Optical fiber[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Field (physics)Breatherbusiness.industryOptical rogue wavesPhysics::OpticsContext (language use)01 natural sciences010305 fluids & plasmaslaw.inventionSupercontinuumOpticslaw0103 physical sciencesRogue wave010306 general physicsbusinessNonlinear Sciences::Pattern Formation and Solitons
researchProduct

Peregrine soliton in optical fiber-based systems

2011

International audience; We report the first observation in optics of the Peregrine soliton, a novel class of nonlinear localized structure. Two experimental configurations are explored and the impact of non-ideal initial conditions is discussed.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Optical fiberbusiness.industryNonlinear optics01 natural sciencesComputational physicslaw.invention010309 opticsNonlinear systemOpticsModulationlaw0103 physical sciencesPeregrine soliton010306 general physicsbusiness
researchProduct

Solitons to supercontinuum: New nonlinear structures in fiber propagation

2010

International audience

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]ComputingMilieux_MISCELLANEOUS
researchProduct

Data-driven Discovery of the Ideal Four Wave Mixing Modelin Nonlinear Fiber Optics

2022

We use the machine learning technique of spars eregression to “reverseengineer” dynamical data to discover the underlying physical model of four wave mixing in nonlinear fibre optics.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]
researchProduct

Real-time measurement of soliton-similariton explosions and intermittence instabilities in a mode-locked fibre laser

2020

International audience; Ultrafast mode-locked lasers are well-known to display a rich variety of unstable dissipative soliton dynamics resulting from the interplay of nonlinearity, dispersion and dissipation. Although laser instabilities have been known and studied in depth for many years, their properties have recently received greatly renewed attention because of the development of time and frequency domain techniques that allow laser dynamics and instabilities to be measured in real-time. This has allowed the variations in circulating pulse characteristics to be examined on a roundtrip to roundtrip basis, providing a new window into understanding these instabilities and how they develop …

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]
researchProduct

50 years of fiber solitons

2023

The study of temporal solitons has revolutionized fiber optics, yielded new classes of ultrafast laser and opened multiple interdisciplinary applications.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][NLIN] Nonlinear Sciences [physics]
researchProduct

Nonlinear dynamics of modulated signals in optical fibers

2012

International audience; The nonlinear Schrodinger equation (NLSE) describes the nonlinear waves localization dynamics in weakly dispersive media, and it has been extensively studied in various contexts in nonlinear science. A particular class of solutions of the NLSE that has recently attracted considerable attention is that of the solitons on finite background as their localization dynamics have been proposed as an important mechanism underlying the formation of extreme amplitude waves on the surface of the ocean. Much of this work has also been motivated by an extensive parallel research effort research in optics that has shown how nonlinear optical fiber systems can be used to implement …

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Nonlinear Sciences::Pattern Formation and Solitons
researchProduct

Dynamique des solitons de Kuznetsov-Ma observée en optique fibrée non-linéaire

2012

International audience; Le soliton de Kuznetzov-Ma est une solution de l'équation de Schrödinger non-linéaire qui a été identifiée dès 1977 mais qui à ce jour n'avait encore jamais été observée expérimentalement. Nous décrivons ici une expérience mettant en évidence la dynamique du soliton KM à travers la propagation non-linéaire de breathers dans une fibre optique.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]
researchProduct

Lumière sur les vagues scélérates : le soliton de Peregrine enfin observé !

2012

National audience

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]ComputingMilieux_MISCELLANEOUS
researchProduct

Rediscovered dynamics of nonlinear fiber optics: from breathers to extreme localisation

2011

International audience

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]ComputingMilieux_MISCELLANEOUS
researchProduct