6533b829fe1ef96bd128a450

RESEARCH PRODUCT

Nonlinear spectral shaping and optical rogue events in fiber-based systems

Julien FatomeGoëry GentyKamal HammaniGuy MillotChristophe FinotSonia BoscoloJohn M. DudleyBertrand Kibler

subject

Optical fiberPhysics::Optics02 engineering and technology01 natural sciencesStability (probability)law.invention010309 optics020210 optoelectronics & photonicsOpticslaw0103 physical sciencesDispersion (optics)0202 electrical engineering electronic engineering information engineeringFiberElectrical and Electronic EngineeringInstrumentationPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryPulse shapingAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsSupercontinuumNonlinear systemControl and Systems EngineeringPeregrine solitonbusiness

description

International audience; We provide an overview of our recent work on the shaping and stability of optical continua in the long pulse regime. Fibers with normal group-velocity dispersion at all-wavelengths are shown to allow for highly coherent continua that can be nonlinearly shaped using appropriate initial conditions. In contrast, supercontinua generated in the anomalous dispersion regime are shown to exhibit large fluctuations in the temporal and spectral domains that can be controlled using a carefully chosen seed. A particular example of this is the first experimental observation of the Peregrine soliton which constitutes a prototype of optical rogue-waves.

https://hal.archives-ouvertes.fr/hal-00699104/document