0000000000776434

AUTHOR

Rie Tanaka

showing 4 related works from this author

The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser

2019

Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Unexpectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signaling aspartate. The chan…

DYNAMICSQH301-705.5ScienceEXCITED-STATEDIFFRACTION010402 general chemistryPhotosynthesisphytochromes01 natural sciencesCofactor03 medical and health scienceschemistry.chemical_compoundDeinococcus radioduransPROTON-TRANSFERREVEALSSFXCRYSTAL-STRUCTUREBiology (General)Bilin030304 developmental biologyISOMERIZATION0303 health sciencesbiologyPhytochromeD-RINGChemistryCRYSTALLOGRAPHYinitial photoresponsQRChromophore0104 chemical sciencesPhotoexcitationFemtosecondbiology.proteinBiophysics1182 Biochemistry cell and molecular biologyMedicine3111 BiomedicinevalokemiaproteiinitSignal transductionröntgenkristallografia
researchProduct

Author response: The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser

2020

X-ray laserPrimary (chemistry)Materials sciencePhytochromebusiness.industryFemtosecondOptoelectronicsbusiness
researchProduct

Serial femtosecond crystallography reveals that photoactivation in a fluorescent protein proceeds via the hula twist mechanism

2023

Chromophore cis/trans photoisomerization is a fundamental process in chemistry and in the activation of many photosensitive proteins. A major task is understanding the effect of the protein environment on the efficiency and direction of this reaction compared to what is observed in the gas and solution phases. In this study, we set out to visualize the hula twist (HT) mechanism in a fluorescent protein, which is hypothesized to be the preferred mechanism in a spatially constrained binding pocket. We use a chlorine substituent to break the twofold symmetry of the embedded phenolic group of the chromophore and unambiguously identify the HT primary photoproduct. Through serial femtosecond crys…

fluoresenssiproteiinitvalokemiaGeneral Chemistry03 Chemical Sciences
researchProduct

Structural basis for light control of cell development revealed by crystal structures of a myxobacterial phytochrome

2018

Phytochromes are red-light photoreceptors that were first characterized in plants, with homologs in photosynthetic and non-photosynthetic bacteria known as bacteriophytochromes (BphPs). Upon absorption of light, BphPs interconvert between two states denoted Pr and Pfr with distinct absorption spectra in the red and far-red. They have recently been engineered as enzymatic photoswitches for fluorescent-marker applications in non-invasive tissue imaging of mammals. This article presents cryo- and room-temperature crystal structures of the unusual phytochrome from the non-photosynthetic myxobacterium Stigmatella aurantiaca (SaBphP1) and reveals its role in the fruiting-body formation of this ph…

MODULE0301 basic medicinePHOTOACTIVE YELLOW PROTEINSIGNALING MECHANISMabsorption spectraMutantfotobiologiaphytochromesBiochemistryyhteyttäminenbakteeritSTIGMATELLA-AURANTIACA03 medical and health sciencesFRUITING BODY FORMATIONGeneral Materials ScienceMolecular replacementStigmatella aurantiacalcsh:ScienceUNUSUAL BACTERIOPHYTOCHROMEPHOTOCONVERSIONHistidine030102 biochemistry & molecular biologybiologyPhytochromeChemistryCRYSTALLOGRAPHYta1182photosynthetic bacteriaphotoreceptorsGeneral ChemistryChromophoreCondensed Matter Physicsbiology.organism_classification030104 developmental biologyCHROMOPHORE-BINDING DOMAINBiophysicsmyxobacterialcsh:Q3111 BiomedicinePhotosynthetic bacteriaproteiinitMOLECULAR REPLACEMENTBinding domainIUCrJ
researchProduct