0000000000777952

AUTHOR

Mercè Masana

0000-0003-1392-4774

The stressed cytoskeleton: How actin dynamics can shape stress-related consequences on synaptic plasticity and complex behavior

Stress alters synaptic plasticity but the molecular and cellular mechanisms through which environmental stimuli modulate synaptic function remain to be elucidated. Actin filaments are the major structural component of synapses and their rearrangements by actin-binding proteins (ABPs) are critical for fine-tuning synaptic plasticity. Accumulating evidence suggests that some ABPs are specifically regulated by stress and stress-related effectors such as glucocorticoids and corticotropin releasing hormone. ABPs may thus be central in stress-induced perturbations at the level of synaptic plasticity, leading to impairments in behavioral domains including cognitive performance and social behavior.…

research product

The Stress-Inducible Protein DRR1 Exerts Distinct Effects on Actin Dynamics.

Cytoskeletal dynamics are pivotal to memory, learning, and stress physiology, and thus psychiatric diseases. Downregulated in renal cell carcinoma 1 (DRR1) protein was characterized as the link between stress, actin dynamics, neuronal function, and cognition. To elucidate the underlying molecular mechanisms, we undertook a domain analysis of DRR1 and probed the effects on actin binding, polymerization, and bundling, as well as on actin-dependent cellular processes. Methods: DRR1 domains were cloned and expressed as recombinant proteins to perform in vitro analysis of actin dynamics (binding, bundling, polymerization, and nucleation). Cellular actin-dependent processes were analyzed in trans…

research product