Multiscale Granger causality analysis by à trous wavelet transform
Since interactions in neural systems occur across multiple temporal scales, it is likely that information flow will exhibit a multiscale structure, thus requiring a multiscale generalization of classical temporal precedence causality analysis like Granger's approach. However, the computation of multiscale measures of information dynamics is complicated by theoretical and practical issues such as filtering and undersampling: to overcome these problems, we propose a wavelet-based approach for multiscale Granger causality (GC) analysis, which is characterized by the following properties: (i) only the candidate driver variable is wavelet transformed (ii) the decomposition is performed using the…