0000000000778529

AUTHOR

Jiajun Wang

showing 2 related works from this author

Co-reductive fabrication of carbon nanodots with high quantum yield for bioimaging of bacteria

2018

A simple and straightforward synthetic approach for carbon nanodots (C-dots) is proposed. The strategy is based on a one-step hydrothermal chemical reduction with thiourea and urea, leading to high quantum yield C-dots. The obtained C-dots are well-dispersed with a uniform size and a graphite-like structure. A synergistic reduction mechanism was investigated using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The findings show that using both thiourea and urea during the one-pot synthesis enhances the luminescence of the generated C-dots. Moreover, the prepared C-dots have a high distribution of functional groups on their surface. In this work, C-dots proved …

hydrothermalMaterials scienceGeneral Physics and AstronomyQuantum yield02 engineering and technologylcsh:Chemical technologyCarbon nanodots010402 general chemistrylcsh:Technology01 natural sciencesFull Research PaperHydrothermal circulationNanomaterialschemistry.chemical_compoundX-ray photoelectron spectroscopyNanotechnologylcsh:TP1-1185General Materials Sciencecarbon nanodotsbioimagingElectrical and Electronic EngineeringFourier transform infrared spectroscopylcsh:Sciencecollaborative reductionlcsh:TCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyBioimagingHydrothermallcsh:QC1-9990104 chemical sciencesNanoscienceChemical engineeringThioureachemistrySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoCollaborative reductionUrealcsh:Q0210 nano-technologyLuminescencelcsh:PhysicsBeilstein Journal of Nanotechnology
researchProduct

Nitrogen and sulfur co-doped carbon nanodots toward bovine hemoglobin: A fluorescence quenching mechanism investigation

2018

A deep understanding of the molecular interactions of carbon nanodots with biomacromolecules is essential for wider applications of carbon nanodots both in vitro and in vivo. Herein, nitrogen and sulfur co-doped carbon dots (N,S-CDs) with a quantum yield of 16% were synthesized by a 1-step hydrothermal method. The N,S-CDs exhibited a good dispersion, with a graphite-like structure, along with the fluorescence lifetime of approximately 7.50 ns. Findings showed that the fluorescence of the N,S-CDs was effectively quenched by bovine hemoglobin as a result of the static fluorescence quenching. The mentioned quenching mechanism was investigated by the Stern-Volmer equation, temperature-dependent…

NitrogenQuantum yieldchemistry.chemical_element010402 general chemistryPhotochemistry01 natural sciencesHemoglobinsStructural BiologyQuantum DotsAnimalsMolecular Biologybovine hemoglobinQuenching (fluorescence)010401 analytical chemistryFluorescenceSulfurAcceptorNitrogenCarbon0104 chemical sciencesquenching mechanismchemistrySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoCattlefluorescenceDispersion (chemistry)CarbonSulfurnitrogen and sulfur co-doped carbon dotsJournal of Molecular Recognition
researchProduct