0000000000778612
AUTHOR
Guillaume Bailly
Critical Influence of Dielectric Sensitive Material and Manufactured Process in Microwave Gas-Sensing: Application of Ammonia Detection with an Interdigital Sensor
In this paper, authors propose a study on microwave gas sensors and the influence of critical key parameters such as the sensitive material and the circuit conception process. This work aims to determine the influence of these parameters on the quality of the final response of the microwave gas sensor. The fixed geometry of the sensor is a microstrip interdigital capacitor coated with a sensitive layer excited with two 50 Ω SMA ports. The sensitive material has been chosen in order to interact with the target gas: ammonia. Indeed, this gas interacts with phthalocyanine and metal oxides like hematite, TiO2. To explore the effect of the circuit manufacturing process, three series of samples a…
Development of the microwave transduction applied to ammonia detection : from nanomaterials to broadband sensor, understanding of the mechanisms and water traces influence
The main objective of this thesis is to propose an analysis of the microwave transduction specificities in the framework of ammonia sensing applications. The two main features of this transduction are its broadband characterization (1 to 8 GHz) as well as its sensitive materials (dielectrics). This transduction method is based on the interaction between a polluting gas and a sensitive material deposited on the surface of a microwave-specific propagating structure. The response of the sensor is not directly induced by the dielectric properties of the gaseous target molecule, but rather by those of the target species adsorbed on the surface of the sensitive material. This adsorption causes a …