0000000000778833

AUTHOR

Octavio Diez Sales

Inhibition of skin inflammation in mice by diclofenac in vesicular carriers: Liposomes, ethosomes and PEVs

Diclofenac-loaded phospholipid vesicles, namely conventional liposomes, ethosomes and PEVs (penetration enhancer-containing vesicles) were developed and their efficacy in TPA (phorbol ester) induced skin inflammation was examined. Vesicles were made from a cheap and unpurified mixture of phospholipids and diclofenac sodium; Transcutol P and propylene glycol were added to obtain PEVs, and ethanol to produce ethosomes. The structure and lamellar organization of the vesicle bilayer were investigated by transmission electron microscopy and small and wide angle X-ray scattering, as well as the main physico-chemical features. The formulations, along with a diclofenac solution and commercial Volta…

research product

Glycerosomes: Use of hydrogenated soy phosphatidylcholine mixture and its effect on vesicle features and diclofenac skin penetration.

In this work, diclofenac was encapsulated, as sodium salt, in glycerosomes containing 10, 20 or 30% of glycerol in the water phase with the aim to ameliorate its topical efficacy. Taking into account previous findings, glycerosome formulation was modified, in terms of economic suitability, using a cheap and commercially available mixture of hydrogenated soy phosphatidylcholine (P90H). P90H glycerosomes were spherical and multilamellar; photon correlation spectroscopy showed that obtained vesicles were ∼131nm, slightly larger and more polydispersed than those made with dipalmitoylphosphatidylcholine (DPPC) but, surprisingly, they were able to ameliorate the local delivery of diclofenac, whic…

research product

Oleuropein multicompartment nanovesicles enriched with collagen as a natural strategy for the treatment of skin wounds connected with oxidative stress.

Aim: Collagen-enriched transfersomes, glycerosomes and glytransfersomes were specifically tailored for skin delivery of oleuropein. Methods: Vesicles were prepared by direct sonication and their main physicochemical and technological properties were measured. Biocompatibility, protective effect and promotion of the healing of a wounded cell monolayer were tested in vitro using fibroblasts. Results: Vesicles were mainly multicompartment, small (∼108 nm), slightly polydispersed (approximately 0.27) and negatively charged (~-49 mV). Oleuropein was incorporated in high amounts (approximately 87%) and vesicles were stable during four months of storage. In vitro studies confirmed the low toxicit…

research product

Fabrication of polyelectrolyte multilayered vesicles as inhalable dry powder for lung administration of rifampicin

A polyelectrolyte complex based on chitosan and carrageenan was used to coat rifampicin-loaded vesicles and obtain a dry powder for inhalation by spray-drying. The polymer complexation on vesicle surface stabilized them and improved their adhesion on airways and epithelia cells. Uncoated liposomes were small in size, negatively charged and able to incorporate large amounts of rifampicin (70%). Coated vesicles were still able to load adequate amounts of drug (∼70%) but the coating process produced larger particles (1 μm) that were positively charged and with a spherical shape. Aerosol performances, evaluated using the next-generation impactor, showed that coated vesicles reached the 50% of f…

research product

NNM-2021-0197 Suppl. Data

Percentage of oleuropein released from the dispersion or vesicles during 96 hours. The mean values ± standard deviations (error bars) are reported (n=3). Symbol * indicates values statistically different from the other values at the same time.

research product