0000000000780429
AUTHOR
F Bagarello
Gabor-like systems in ${cal L}^2({bf R}^d)$ and extensions to wavelets
In this paper we show how to construct a certain class of orthonormal bases in starting from one or more Gabor orthonormal bases in . Each such basis can be obtained acting on a single function with a set of unitary operators which operate as translation and modulation operators in suitable variables. The same procedure is also extended to frames and wavelets. Many examples are discussed.
A class of weak pseudo-bosons and their bi-coherent states
In this paper we extend some previous results on weak pseudo-bosons and on their related bi-coherent states. The role of {\em compatible} functions is discussed in details, and some examples are considered. The pseudo-bosonic ladder operators analysed in this paper generalize significantly those considered so far, and a class of new diagonalizable manifestly non self-adjoint Hamiltonians are deduced.