On the Effect of Downscaling in Inkjet Printed Life-Inspired Compartments
The fabrication of size-scalable liquid compartments is a topic of fundamental importance in synthetic biology, aiming to mimic the structures and the functions of cellular compartments. Here, inkjet printing is demonstrated as a customizable approach to fabricate aqueous compartments at different size regimes (from nanoliter to femtoliter scale) revealing the crucial role of size in governing the emerging of new properties. At first, inkjet printing is shown to produce homogenous aqueous compartments stabilized by oil-confinement with mild surfactants down to the hundreds of picoliter scale [1]. Raster Image Correlation Spectroscopy allows to monitor few intermolecular events by the involv…