0000000000784746

AUTHOR

Olivier Mousis

showing 3 related works from this author

Constraints on the Volatile Enrichments in HD189733b from Internal Structure Models

2010

International audience

[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistry[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistryComputingMilieux_MISCELLANEOUS
researchProduct

Martian zeolites as a source of atmospheric methane

2016

The origin of the martian methane is still poorly understood. A plausible explanation is that methane could have been produced either by hydrothermal alteration of basaltic crust or by serpentinization of ultramafic rocks producing hydrogen and reducing crustal carbon into methane. Once formed, methane storage on Mars is commonly associated with the presence of hidden clathrate reservoirs. Here, we alternatively suggest that chabazite and clinoptilolite, which belong to the family of zeolites, may form a plausible storage reservoir of methane in the martian subsurface. Because of the existence of many volcanic terrains, zeolites are expected to be widespread on Mars and their Global Equival…

Chabazite010504 meteorology & atmospheric sciencesClathrate hydrateFOS: Physical sciences01 natural sciencesMethaneAstrobiologychemistry.chemical_compound0103 physical sciences010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesEarth and Planetary Astrophysics (astro-ph.EP)BasaltMartianAtmospheric methaneAstronomy and AstrophysicsMars Exploration ProgramAtmosphere of Marschemistry13. Climate actionSpace and Planetary Science[SDU]Sciences of the Universe [physics]Environmental science[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph][ SDU ] Sciences of the Universe [physics]Astrophysics - Earth and Planetary Astrophysics
researchProduct

Formation Conditions of Titan's and Enceladus's Building Blocks in Saturn's Circumplanetary Disk

2021

Abstract The building blocks of Titan and Enceladus are believed to have formed in a late-stage circumplanetary disk (CPD) around Saturn. Evaluating the evolution of the abundances of volatile species in this disk as a function of the migration, growth, and evaporation of icy grains is then of primary importance to assess the origin of the material that eventually formed these two moons. Here we use a simple prescription of Saturn’s CPD in which the location of the centrifugal radius is varied, to investigate the time evolution of the icelines of water ice, ammonia hydrate, methane clathrate, carbon monoxide, and dinitrogen pure condensates. To match their compositional data, the building b…

PhysicsSatellite formationAstronomy and AstrophysicsSaturnian satellitesAstrobiologysymbols.namesakeGeophysicsSpace and Planetary Science[SDU]Sciences of the Universe [physics]SaturnEarth and Planetary Sciences (miscellaneous)symbolsEnceladusTitan (rocket family)Astrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - Earth and Planetary Astrophysics
researchProduct