Some Theoretical Results About Stability for IMEX Schemes Applied to Hyperbolic Equations with Stiff Reaction Terms
In this work we are concerned with certain numerical difficulties associated to the use of high order Implicit–Explicit Runge–Kutta (IMEX-RK) schemes in a direct discretization of balance laws with stiff source terms. We consider a simple model problem, introduced by LeVeque and Yee in [J. Comput. Phys 86 (1990)], as the basic test case to explore the ability of IMEX-RK schemes to produce and maintain non-oscillatory reaction fronts.
On stability issues for IMEX schemes applied to 1D scalar hyperbolic equations with stiff reaction terms
The application of a Method of Lines to a hyperbolic PDE with source terms gives rise to a system of ODEs containing terms that may have very different stiffness properties. In this case, Implicit-Explicit Runge-Kutta (IMEX-RK) schemes are particularly useful as high order time integrators because they allow an explicit handling of the convective terms, which can be discretized using the highly developed shock capturing technology, together with an implicit treatment of the source terms, necessary for stability reasons. Motivated by the structure of the source term in a model problem introduced by LeVeque and Yee in [J. Comput. Phys. 86 (1990)], in this paper we study the preservation of ce…