On Computational Properties of a Posteriori Error Estimates Based upon the Method of Duality Error Majorants
In the present paper, we analyze computational properties of the functional type a posteriori error estimates that have been derived for elliptic type boundary-value problems by duality theory in calculus of variations. We are concerned with the ability of this type of a posteriori estimates to provide accurate upper bounds of global errors and properly indicate the distribution of local ones. These questions were analyzed on a series of boundary-value problems for linear elliptic operators of 2nd and 4th order. The theoretical results are confirmed by numerical tests in which the duality error majorant for the classical diffusion problem is compared with the standard error indicator used i…