Interpretation of absorption edges by resonant electronic spectroscopy: experiment and theory
Abstract Resonant electronic spectroscopy consists in measuring a non-radiative decay process (Auger or autoionization process) excited with photon energies around an absorption edge. The resonant spectra carry information both on the nature of the electronic transitions near the absorption edge by scanning the very first empty orbitals above the Fermi level (through the absorption process), and, on the other hand, on the atomic electronic configuration through the lineshape of the observed decay process. In this paper, after a quick review of the pioneering works in this field, we show that resonant measurements and their theoretical modeling can be used to precisely interpret complex abso…