Monte Carlo simulation approach for a quantitative characterization of the band edge in InGaN quantum wells
Monte Carlo simulation approach based on exciton hopping through randomly distributed localized states is proposed for quantitative characterization of the band edge of InxGa1–xN/GaN multiple quantum wells with different indium content (x ≈ 0.22–0.27). The band edge dynamics is investigated in the 10–300 K range by analyzing the measured S- and W-shaped temperature behavior of the photoluminescence peak position and linewidth, respectively. The simulation of the W-shaped temperature dependence using double-scaled potential profile model enabled us to estimate the scale of the potential fluctuations due to variation of indium content inside and among In-rich regions formed in InGaN alloy. In…