0000000000786233
AUTHOR
L. I. Korovin
Triple magnetopolarons in quantum wells
We derive the equations for eigenstates and eigenenergies of a triple magnetopolaron in quantum-well structures. An iteration procedure for obtaining the wave function and energy including the contributions of diagrams with crossing phonon lines is given. We show that under conditions of exact resonance the middle energy branch of the triply split magnetopolaron state consists of only two out of three bare states. We suggest the experimental verification of this prediction.
Spatial correlation of laser-generated electrons and holes in quantum wells
The spatial correlation of hot electrons and holes generated by light in a semiconductor quantum well (QW) is studied. For hot electron-hole pairs in a polar material, this correlation is determined by the interaction with LO-phonons. We analyze the distribution F N (r, K) of electrons and holes which are created in a given light absorption process, with respect to their relative separation r and total quasimomentum ħK, after the emission of a number N of LO-phonons. The relationship between the spatial distribution of electrons and holes in these intermediate states and the cross-section of multi-phonon resonant Raman scattering (MPRRS) is established. Spatial correlation effects are stron…