0000000000786610

AUTHOR

Josep Carbonell

0000-0003-3568-0520

showing 2 related works from this author

Piriform cortex alterations in the Ts65Dn model for down syndrome

2020

The piriform cortex is involved in olfactory information processing, that is altered in Down Syndrome. Moreover, piriform cortex has a crucial involvement in epilepsy generation and is one of the first regions affected in Alzheimer's Disease, both maladies being prevalent among Down Syndrome individuals. In this work, we studied the alterations in neuronal morphology, synaptology and structural plasticity in the piriform cortex of the Ts65Dn mouse model, which is the most used model for the study of this syndrome and mimics some of their alterations. We have observed that Ts65Dn piriform cortex displays: a reduction in dendritic arborisation, a higher density of inhibitory synapses (GAD67),…

0301 basic medicineGlutamate decarboxylasePresynaptic TerminalsMice TransgenicPiriform CortexInhibitory postsynaptic potentialMice03 medical and health sciences0302 clinical medicineAtrophyPostsynaptic potentialPiriform cortexmedicineNeuropilAnimalsMolecular BiologyNeuronsGephyrinbiologyGlutamate DecarboxylaseGeneral NeuroscienceMembrane Proteinsmedicine.disease030104 developmental biologymedicine.anatomical_structurenervous systemVesicular Glutamate Transport Protein 1biology.proteinExcitatory postsynaptic potentialNeurology (clinical)Down SyndromeNeuroscience030217 neurology & neurosurgeryDevelopmental BiologyBrain Research
researchProduct

Alterations in reelin and reelin receptors in Down syndrome.

2019

Reelin is an extracellular matrix glycoprotein that modulates synaptic function and plasticity, with a crucial role in neuronal migration. Changes in the expression of this protein have been reported in neurodegenerative diseases, such as Alzheimer's disease (AD). This molecule is produced by Cajal-Retzius neurons during development and by inhibitory neurons in the adult nervous system. Individuals with Down syndrome (DS) present an early development of AD; therefore, we analyzed the alterations in this molecule and its receptors in the murine model for DS Ts65Dn as well as in human with DS. We performed immunofluorescence analysis for reelin and its receptors very-low-density lipoprotein r…

0301 basic medicineNervous systemAdultMaleReceptor expressionCell Adhesion Molecules NeuronalNerve Tissue ProteinsReceptors Cell SurfaceTissue BanksInhibitory postsynaptic potential03 medical and health sciencesMice0302 clinical medicinemedicineAnimalsHumansReelinReceptorLDL-Receptor Related ProteinsAgedTemporal cortexNeuronsExtracellular Matrix ProteinsbiologyCell adhesion moleculeGeneral NeuroscienceSerine EndopeptidasesMiddle AgedTemporal LobeCell biologyDisease Models AnimalReelin Protein030104 developmental biologymedicine.anatomical_structurenervous systemReceptors LDLbiology.proteinDown Syndrome030217 neurology & neurosurgeryLipoproteinNeuroreport
researchProduct