0000000000787182

AUTHOR

Maximilian Kreiter

Incorporation of the acetylcholine receptor dimer from Torpedo californica in a peptide supported lipid membrane investigated by surface plasmon and fluorescence spectroscopy

Abstract The dimer species (Mr 580 000) of the nicotinic acetylcholine receptor, isolated from the electric organ of Torpedo californica, was incorporated into a thiopeptide supported lipid bilayer. The incorporation was achieved by fusion of liposomes with reconstituted receptor onto a gold-supported thiopeptide lipid monolayer. Surface plasmon resonance spectroscopy (SPS) was used to monitor in real time the fusion process as well as the specific binding of the antagonist α-bungarotoxin. A recently developed extension of SPS offering enhanced sensitivity and specificity, surface plasmon fluorescence spectroscopy (SPFS), was then used to monitor subsequent binding of the monoclonal WF6 and…

research product

Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons

The angular emission of light of wavelength 710 and 810 nm from a gold diffraction grating was studied at about 700°C. A peak in the emission was found for defined angles. This contribution is purely TM-polarised and is attributed to thermally excited surface plasmons, coupled to light waves by the diffraction grating.

research product

Field Emission of Electrons Generated by the Near Field of Strongly Coupled Plasmons

Field emission of electrons is generated solely by the ultrastrong near-field of strongly coupled plasmons without the help of a noticeable dc field. Strongly coupled plasmons are excited at Au nanoparticles in subnanometer distance to a Au film by femtosecond laser pulses. Field-emitted electrons from individual nanoparticles are detected by means of photoelectron emission microscopy and spectroscopy. The dependence of total electron yield and kinetic energy on the laser power proves that field emission is the underlying emission process. We derive a dynamic version of the Fowler-Nordheim equation that yields perfect agreement with the experiment.

research product

Photoemission Electron Microscopy as a tool for the investigation of optical near fields

Photoemission electron microscopy was used to image the electrons photoemitted from specially tailored Ag nanoparticles deposited on a Si substrate (with its native oxide SiO$_{x}$). Photoemission was induced by illumination with a Hg UV-lamp (photon energy cutoff $\hbar\omega_{UV}=5.0$ eV, wavelength $\lambda_{UV}=250$ nm) and with a Ti:Sapphire femtosecond laser ($\hbar\omega_{l}=3.1$ eV, $\lambda_{l}=400$ nm, pulse width below 200 fs), respectively. While homogeneous photoelectron emission from the metal is observed upon illumination at energies above the silver plasmon frequency, at lower photon energies the emission is localized at tips of the structure. This is interpreted as a signat…

research product

Near Field of Strongly Coupled Plasmons: Uncovering Dark Modes

Strongly coupled plasmons in a system of individual gold nanoparticles placed at subnanometer distance to a gold film (nanoparticle-on-plane, NPOP) are investigated using two complementary single particle spectroscopy techniques. Optical scattering spectroscopy exclusively detects plasmon modes that couple to the far field via their dipole moment (bright modes). By using photoemission electron microscopy (PEEM), we detect in the identical NPOPs near-field modes that do not couple to the scattered far field (dark modes) and are characterized by a strongly enhanced nonlinear electron emission process. To our knowledge, this is the first time that both far- and near-field spectroscopy are carr…

research product