0000000000787203

AUTHOR

Alessia Orlando

ML-Based Radiomics Analysis for Breast Cancer Classification in DCE-MRI

Breast cancer is the most common malignancy that threatening women’s health. Although Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) for breast lesions characterization is widely used in the clinical practice, physician grading performance is still not optimal, showing a specificity of about 72%. In this work Radiomics was used to analyze a dataset acquired with two different protocols in order to train Machine-Learning algorithms for breast cancer classification. Original radiomic features were expanded considering Laplacian of Gaussian filtering and Wavelet Transform images to evaluate whether they can improve predictive performance. A Multi-Instant features selection invo…

research product

Robustness Analysis of DCE-MRI-Derived Radiomic Features in Breast Masses: Assessing Quantization Levels and Segmentation Agreement

Featured Application The use of highly robust radiomic features is fundamental to reduce intrinsic dependencies and to provide reliable predictive models. This work presents a study on breast tumor DCE-MRI considering the radiomic feature robustness against the quantization settings and segmentation methods. Machine learning models based on radiomic features allow us to obtain biomarkers that are capable of modeling the disease and that are able to support the clinical routine. Recent studies have shown that it is fundamental that the computed features are robust and reproducible. Although several initiatives to standardize the definition and extraction process of biomarkers are ongoing, th…

research product