0000000000787256

AUTHOR

Valeria Di Renzo

Degassing vs. eruptive styles at Mt. Etna volcano (Sicily, Italy). Part I: Volatile stocking, gas fluxing, and the shift from low-energy to highly explosive basaltic eruptions

International audience; Basaltic magmas can transport and release large amounts of volatiles into the atmosphere, especially in subduction zones, where slab-derived fluids enrich the mantle wedge. Depending on magma volatile content, basaltic volcanoes thus display a wide spectrum of eruptive styles, from common Strombolian-type activity to Plinian events. Mt. Etna, in Sicily, is a typical basaltic volcano where the volatile control on such a variable activity can be investigated. Based on a melt inclusion study in products from Strombolian or lava-fountain activity to Plinian eruptions, here we show that for the same initial volatile content, different eruptive styles reflect variable dega…

research product

A two-component mantle source feeding Mt. Etna magmatism; insights from the geochemistry of primitive magmas.

The major elements, trace elements and Sr and Nd isotopes of selected Etnean primitive rocks (b15 ky BP) were studied in order to characterize their mantle source. The noble-gas geochemistry of fluid inclusions in minerals fromthe same lavaswas also investigated. Themajor element compositions ofwhole rocks and minerals showed that these products are among the most primitive atMt. Etna, comprising 6.3–17.5 wt.% MgO. The variable LREE (Light Rare Earth Elements) enrichment relative to MORB (Mid-Ocean Ridge Basalt) (Lan/Ybn = 11–26), togetherwith the patterns of certain trace-element ratios (i.e., Ce/Yb versus Zr/Nb and Th/Y versus La/Yb), can be attributed to varying degrees of melting of a c…

research product