Exact dark soliton solutions for a family ofNcoupled nonlinear Schrödinger equations in optical fiber media
We consider a family of N coupled nonlinear Schr\"odinger equations which govern the simultaneous propagation of N fields in the normal dispersion regime of an optical fiber with various important physical effects. The linear eigenvalue problem associated with the integrable form of all the equations is constructed with the help of the Ablowitz-Kaup-Newell-Segur method. Using the Hirota bilinear method, exact dark soliton solutions are explicitly derived.
Optimized Hermite-Gaussian ansatz functions for dispersion-managed solitons
Abstract By theoretical analysis, we show that the usual procedure of simply projecting the dispersion-managed (DM) soliton profile onto the basis of an arbitrary number of Hermite-gaussian (HG) polynomials leads to relatively accurate ansatz functions, but does not correspond to the best representation of DM solitons. Based on the minimization of the soliton dressing, we present a simple procedure, which provides highly accurate representation of DM solitons on the basis of a few HG polynomials only.