Formulations and valid inequalities for the capacitated dispersion problem
This work focuses on the capacitated dispersion problem for which we study several mathematical formulations in different spaces using variables associated with nodes, edges, and costs. The relationships among the presented formulations are investigated by comparing the projections of the feasible sets of the LP relaxations onto the subspace of natural variables. These formulations are then strengthened with families of valid inequalities and variable-fixing procedures. The separation problems associated with the valid inequalities that are exponential in number are shown to be polynomially solvable by reducing them to longest path problems in acyclic graphs. The dual bounds obtained from s…