Mechanism‐Dependent Modulation of Ultrafast Interfacial Water Dynamics in Intrinsically Disordered Protein Complexes
Abstract The recognition of intrinsically disordered proteins (IDPs) is highly dependent on dynamics owing to the lack of structure. Here we studied the interplay between dynamics and molecular recognition in IDPs with a combination of time‐resolving tools on timescales ranging from femtoseconds to nanoseconds. We interrogated conformational dynamics and surface water dynamics and its attenuation upon partner binding using two IDPs, IBB and Nup153FG, both of central relevance to the nucleocytoplasmic transport machinery. These proteins bind the same nuclear transport receptor (Importinβ) with drastically different binding mechanisms, coupled folding–binding and fuzzy complex formation, resp…
Phase Separation Comes of Age: From Phenomenology to Single Molecules
Cellular RNAs often colocalize with cytoplasmic, membrane-less ribonucleoprotein (RNP) granules enriched for RNA processing enzymes, termed processing bodies (PBs). Here, we track the dynamic localization of individual miRNAs, mRNAs and long non-coding RNAs (lncRNAs) to PBs using intracellular single-molecule fluorescence microscopy. We find that unused miRNAs stably bind to PBs, whereas functional miRNAs, repressed mRNAs and lncRNAs both transiently and stably localize within either the core or periphery of PBs, albeit to different extents. Consequently, translation potential and 3` versus 5` placement of miRNA target sites significantly impact PB-localization dynamics of mRNAs. Using comp…
Mechanismusabhängige Regulation der ultraschnellen Dynamik von Wasser an Grenzflächen in Komplexen mit intrinsisch ungeordneten Proteinen
Comment on “Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water”
Editors at Science requested our input on the above discussion (comment by Best et al . and response by Riback et al .) because both sets of authors use our data from Fuertes et al . (2017) to support their arguments. The topic of discussion pertains to the discrepant inferences drawn from SAXS versus FRET measurements regarding the dimensions of intrinsically disordered proteins (IDPs) in aqueous solvents. Using SAXS measurements on labeled and unlabeled proteins, we ruled out the labels used for FRET measurements as the cause of discrepant inferences between the two methods. Instead, we propose that FRET and SAXS provide complementary readouts because of a decoupling of size and shape fl…
Two differential binding mechanisms of FG-nucleoporins and nuclear transport receptors
Summary Phenylalanine-glycine-rich nucleoporins (FG-Nups) are intrinsically disordered proteins, constituting the selective barrier of the nuclear pore complex (NPC). Previous studies showed that nuclear transport receptors (NTRs) were found to interact with FG-Nups by forming an “archetypal-fuzzy” complex through the rapid formation and breakage of interactions with many individual FG motifs. Here, we use single-molecule studies combined with atomistic simulations to show that, in sharp contrast, FG-Nup214 undergoes a coupled reconfiguration-binding mechanism when interacting with the export receptor CRM1. Association and dissociation rate constants are more than an order of magnitude lowe…