0000000000789125

AUTHOR

Bs Nara Singh

Evolution of Octupole Deformation in Radium Nuclei from Coulomb Excitation of Radioactive $^{222}$Ra and $^{228}$Ra Beams

There is sparse direct experimental evidence that atomic nuclei can exhibit stable pear shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole ($E3$) matrix elements have been determined for transitions in $^{222,228}$Ra nuclei using the method of sub-barrier, multi-step Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN. The observed pattern of $E$3 matrix elements for different nuclear transitions is explained by describing $^{222}$Ra as pear-shaped with stable octupole deformation, while $^{228}$Ra behaves like an octupole vibrator.

research product

The observation of vibrating pear-shapes in radon nuclei (vol 10, 2473, 2019)

research product

α -decay spectroscopy of the N=130 isotones Ra 218 and Th 220: Mitigation of α -particle energy summing with implanted nuclei

An analysis technique has been developed in order to mitigate energy summing due to sequential short-lived α decays from nuclei implanted into a silicon detector. Using this technique, α-decay spectroscopy of the N=130 isotones Ra218 (Z=88) and Th220 (Z=90) has been performed. The energies of the α particles emitted in the Ra218→Rn214 and Th220→Ra216 ground-state-to-ground-state decays have been measured to be 8381(4) keV and 8818(13) keV, respectively. The half-lives of the ground states of Ra218 and Th220 have been measured to be 25.99(10) μs and 10.4(4) μs, respectively. The half-lives of the ground states of the α-decay daughters, Rn214 and Ra216, have been measured to be 259(3) ns and …

research product

alpha-decay spectroscopy of the N=130 isotones Ra-218 and Th-220: Mitigation of alpha-particle energy summing with implanted nuclei

research product